Journal of Endocrinological Investigation

, Volume 13, Issue 7, pp 559–566 | Cite as

Nocturnal oscillations in plasma renin activity during sleep in hypertensive patients: the influence of perindopril

  • G. Brandenberger
  • J.L Imbs
  • J. P. Libert
  • J. Ehrhart
  • C. Simon
  • J.Ph. Santoni
  • M. Follenius


In previous studies, we established a strong concordance between nocturnal oscillations in plasma renin activity (PRA) and REM-NREM sleep cycles. To determine whether this relation persists in the case of moderate essential hypertension and if it is influenced by antihypertensive therapies affecting renin release, six normal subjects and six hypertensive patients were studied. The normal subjects underwent one control night. The hypertensive patients were studied during a first night when a placebo was given. Four of them underwent a second night following a single dose of an angiotensin-converting enzyme (ACE) inhibitor, perindopril; and a third night, 45 days later, with the antihypertensive treatment. In addition, two of the patients underwent two night-studies, after a single and repeated doses of a beta-blocker, atenolol, to see whether preventing renin release modified the sleep structure. The relationship between the nocturnal PRA oscillations and the sleep stage patterns persisted in hypertensive patients receiving placebo. In patients who had low PRA levels, the increases associated with NREM sleep were small. However, the mean relative amplitude of the oscillations, expressed as a percentage of the nocturnal mean, was about 60%, which was similar to that in normotensive subjects. Active renin and PRA oscillations were closely coupled. ACE activity profiles displayed damped fluctuations and no systematic relationship with sleep stages. Perindopril, in single or repeated doses led to striking increases in PRA and amplified the nocturnal oscillations without disturbing their relationship to specific sleep stages. Atenolol almost supressed PRA fluctuations, while regular REM-NREM sleep cycles persisted. These results indicate that the relation between PRA oscillations and sleep stage alternation persists in moderate essential hypertension, and is preserved during perindopril therapy which increases the oscillation amplitude.


Renin activity sleep ultradian rhythm hypertension betablocker angiotensin-converting-enzyme inhibitor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mullen P.E., James V.H.T., Lightman S.L., Linsell C., Peart W.S. A relationship between plasma renin activity and the rapid eye movement phase of sleep in man. J. Clin. Endocrinol. Metab. 50: 466, 1980.PubMedCrossRefGoogle Scholar
  2. 2.
    Brandenberger G., Follenius M., Muzet A., Ehrhart J., Schieber J.P. Ultradian oscillations in plasma renin activity: their relationships to meals and sleep stages. J. Clin. Endocrinol. Metab. 61: 280, 1985.PubMedCrossRefGoogle Scholar
  3. 3.
    Brandenberger G., Simon C., Follenius M. Night-day differences in the ultradian rhythmicity of plasma renin activity. Life Sci. 40: 2325, 1987.PubMedCrossRefGoogle Scholar
  4. 4.
    Brandenberger G., Follenius M., Simon C., Ehrhart J., Libert J.P. Nocturnal oscillations in plasma renin activity and REM-NREM sleep cycles in humans: a common regulatory mechanism? Sleep 11: 242, 1988.PubMedGoogle Scholar
  5. 5.
    Buhler F.R., Laragh J.H., Baer L., Vaughan E.D., Brunner H.R. Propranolol inhibition of renin secretion. N. Engl. J. Med. 287: 1209, 1972.PubMedCrossRefGoogle Scholar
  6. 6.
    Hansson B.G., Dymling J.F., Manhem P., Hokfelt B. Effect of penbutolol and metoprolol on blood pressure, plasma catecholamines and renin activity in hypertensive patients. Eur. Heart J. 4 (Suppl. D): 57, 1983.PubMedCrossRefGoogle Scholar
  7. 7.
    Ferguson R.K., Vlasses P.H., Rotmensch H.H. Clinical applications of angiotensin-converting enzyme inhibitors. Am. J. Med. 77: 690, 1984.PubMedCrossRefGoogle Scholar
  8. 8.
    Edwards C.R.W., Padfield P.L Angiotensin-converting enzyme inhibitors: past, present and bright future. Lancet. 7: 30, 1985.CrossRefGoogle Scholar
  9. 9.
    Brunner H.R., Nussberger J., Waeber B. The present molecules of converting enzyme inhibitors. J. Cardiovasc. Pharmacol. 7: S2, 1985.PubMedCrossRefGoogle Scholar
  10. 10.
    Bussien J.P., Fasanella d’Amore T., Perret L., Porchet M., Nussberger J., Waeber B., Brunner H.R. Single and repeated dosing of the converting enzyme inhibitor perindopril to normal subjects. Clin. Pharmacol. Then 39: 554, 1986.CrossRefGoogle Scholar
  11. 11.
    Rechtschaffen A., Kales A. A manual of standardized terminology, techniques and scoring system for sleep stage of human subjects. US Government Printing Office, Washington, D.C., 1968.Google Scholar
  12. 12.
    Haber E., Koerner T., Page L.B., Liman B., Purnode A. Application of radioimmunoassay of angiotensin I to the physiologic measurements of plasma renin activity in normal human subjects. J. Clin. Endocrinol. Metab. 23: 1349, 1969.CrossRefGoogle Scholar
  13. 13.
    Unger T., Schiill B., Rascher W., Lang R., Ganten D. Selective activation of the converting enzyme inhibitor MK 421 and comparison of its active diacid form with captopril in different tissues of the rat. Biochem. Pharmacol. 31: 3063, 1982.PubMedCrossRefGoogle Scholar
  14. 14.
    Jenkins G.M., Watt G.D. Spectral analysis and its applications. Holden-Day, San Francisco, 1968.Google Scholar
  15. 15.
    Van Cauter E., L’Hermite M., Copinschi G., Refettoff F., Desir D., Robyn C. Quantitative analysis of spontaneous variations of plasma prolactin in normal man. Am. J. Physiol. 247: E355, 1981.Google Scholar
  16. 16.
    Cugini P., Manconi R., Serdoz R., Mancini A., Meucci T., Scavo D. Rhythm characteristics of plasma renin, aldosterone and Cortisol in five subtypes of mesor-hypertension. J. Endocrinol. Invest. 3: 143, 1980.PubMedGoogle Scholar
  17. 17.
    Grim C., Winnacker J., Peters T., Gilberg G. Low renin “normal” aldosterone hypertension: Orcadian rhythm of renin, aldosterone, Cortisol and growth hormone. J. Clin. Endocrinol. Metab. 39: 247, 1974.PubMedCrossRefGoogle Scholar
  18. 18.
    Sowers J.R., Stern N., Nytey M. Dopaminergic modulation of circadian rhythm of blood pressure, renin and aldosterone secretion in essential hypertension. Cardiovasc. Res. 16: 317, 1982.PubMedCrossRefGoogle Scholar
  19. 19.
    Stern N., Sowers J.R., Mc Ginty D., Beahm E., Littner M., Catania R., Eggena P. Circadian rhythm of plasma renin activity in older normal and essential hypertensive men: relation with inactive renin, aldosterone, Cortisol and REM sleep. J. Hypertens. 4: 543, 1986.PubMedCrossRefGoogle Scholar
  20. 20.
    Nimgaonkar V.L, Green A.R., Cowen P.J., Heal D.J., Grahame-Smith D.G., Deakin J.F.W. Studies on the mechanisms by which clenbuterol, a beta-adrenoceptor agonist, enhances 5-HT-mediated behavior and increases metabolism of 5-HT in the brain of the rat. Neuropharmacology 22: 739, 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Keeton T.K., Campbell W.B. The pharmacologic alteration of renin release. Pharmacol. Rev. 32: 81, 1980.PubMedGoogle Scholar
  22. 22.
    Van de Kar L.D., Richardson-Morton K.D. Serotonergic regulation of the release of renin is not mediated by the autonomic nervous system but involves beta-adrenoceptors. Neuropharmacology 25: 487, 1986.PubMedCrossRefGoogle Scholar
  23. 23.
    Cugini P., Manconi R., Mancini A., Serdoz R., Meucci T., Scavo D. Beta-adrenergic regulation of circadian rhythmicity of the renin-angiotensin-aldosterone system in five subtypes of essential hypertension. G. Ital. Cardiol. 70: 184, 1980.Google Scholar
  24. 24.
    Peart W.S. Renin release. Gen. Pharmacol. 9: 65, 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Stella A., Zanchetti A. Neural control of renin secretion. J. Hypertens. 2 (Suppl, 1): 83, 1984.Google Scholar
  26. 26.
    Thames M.D. Renin release: reflex control and adrenergic mechanisms. J. Hypertens. 2 (Suppl. 1): 57, 1984.Google Scholar
  27. 27.
    Ganong W.F., Porter J.P., Bahnson T.D., Said S.I. Peptides and neurotransmitters that affect renin secretion. J. Hypertens. 2 (Suppl. 1): 75, 1984.Google Scholar
  28. 28.
    Koella W.P. The organization and regulation of sleep. Experientia 40: 309, 1984.PubMedCrossRefGoogle Scholar
  29. 29.
    Sallanon M., Janin M., Buda C., Jouvet M. Serotonergic mechanisms and sleep rebound. Brain Res. 268: 95, 1983.PubMedCrossRefGoogle Scholar
  30. 30.
    Gaillard J.M. Biochemical pharmacology of paradoxical sleep. Br. J. Clin. Pharmacol. 16: 205S, 1983.PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Sakai K. Central mechanisms of paradoxical sleep. Exp. Brain Res. (Suppl.) 8: 3, 1984.CrossRefGoogle Scholar
  32. 32.
    Jouvet M. Indolamines and sleep-inducing factors. Exp. Brain Res. (Suppl.) 8: 81, 1984.CrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1990

Authors and Affiliations

  • G. Brandenberger
    • 1
  • J.L Imbs
    • 2
  • J. P. Libert
    • 1
  • J. Ehrhart
    • 1
  • C. Simon
    • 1
  • J.Ph. Santoni
    • 3
  • M. Follenius
    • 1
  1. 1.Laboratoire de Physiologie et de Psychologie Environnementales UMR 32, CNRS/INRSStrasbourg CedexFrance
  2. 2.Service d’Hypertension Artérielle et des Maladies Vasculaires du CHR de StrasbourgStrasbourgFrance
  3. 3.Institut de Recherches Internationales Servier 22Neuilly sur SeineFrance

Personalised recommendations