Journal of Endocrinological Investigation

, Volume 4, Issue 4, pp 379–387 | Cite as

Inhibition of rat hepatic thyroxine 5′-monodeiodinase by propylthiouracil: relation to site of interaction of thyroxine and glutathione

  • T. Yamada
  • I. J. Chopra
  • N. Kaplowitz


When rat liver cytosol, dialyzed free of glutathione, was chromatographed on Sephadex G-100 after incubation with 35S-propylthiouracil, 2 peaks of bound radioactivity were observed, 1 of which contained nearly all the thyroxine 5′-monodeiodinase activity in rat liver cytosol. Binding of propylthiouracil to this peak was inhibited by glutathione but not by thyroxine. Approximately 25% of 35S -propylthiouracil initially bound to the thyroxine 5′-monodeiodinating activity peak remained bound after dialysis, precipitation with trichloroacetic acid, and multiple extractions with ethanol, methanol, and chloroform, suggesting that binding was at least in part covalent. Dialysis studies showed that the presumed covalent binding of 35S -propylthiouracil to the thyroxine 5′-monodeiodinase peak could be inhibited by glutathione, dithioerythritol, and unlabelled propylthiouracil but not by oxidized glutathione or thyroxine. Conversely, thyroxine binding was unaffected by thiol compounds. We studied the kinetics of thyroxine 5′-monodeiodi-nation by radioimmunoassay techniques using rat liver homogenates as source of enzyme and observed the dependence of enzymic reaction upon glutathione (Km = 2.4 mM). Propylthiouracil inhibited the reaction and this inhibition could be overcome with increasing glutathione concentrations. We conclude that the thiol-dependent thyroxine 5′-monodeiodinase is inhibited by propylthiouracil through its covalent binding, probably as mixed disulfide, to a site on the enzyme at which glutathione interacts either as a cosubstrate or reducing agent. This binding site is separate from the site at which thyroxine binds.


Hormones liver enzymes hepatic thyroxine S’-monodeiodinase propylthiouracil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hogness J.R., Wong T., Williams R.H. I131 excretion after injection of radiothyroxine into hyper-thyroid, hypothyroid, or normal rats. Metabolism 3:510, 1954.PubMedGoogle Scholar
  2. 2.
    Larson F.C., Tomita K., Albright E.C. The deiodination of thyroxine to triiodothyronine by kidney slices of rats with varying thyroid function. Endocrinology 57:338, 1955.PubMedCrossRefGoogle Scholar
  3. 3.
    Escobar del Rey F., Morreale de Escobar G. The effect of propylthiouracil, methylthiouracil, and thiouracil on the peripheral metabolism of L-thyroxine in thyroidectomized, L-thyroxine maintained rats. Endocrinology 69:456, 1961.CrossRefGoogle Scholar
  4. 4.
    Oppenheimer J.H., Schwartz H.J., Surks M.I. Propylthiouracil inhibits the conversion of L-thyroxineto L-triiodothyronine. J. Clin. Invest. 51:2493, 1972.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Saberi M., Sterling F.H., Utiger R.D. Redution in extrathyroidal triiodothyronine production by propylthiouracil in man. J. Clin. Invest. 55:218, 1975.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Geffner D.L., Azukizawa M., Hershman J.M. Propylthiouracil blocks extrathyroidal conversion of thyroxine to triiodothyronine and augments thyrotropin secretion in man. J. Clin. Invest. 55:224, 1975.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Visser T.J., Van Der Does-Tobe I., Docter R., Henneman G. Conversion of thyroxine into triiodothyronine by rat liver homogenate. In: Robbins E.J., Braverman L.E. (Eds.), Thyroid research. Excerpta Medica, Amsterdam, 1976, p. 235.Google Scholar
  8. 8.
    Chiraseveenuprapund P., Buergi U., Goswami A., Rosenberg I.N. Conversion of L-thyroxine to triiodothyronine in rat liver homogenate. Endocrinology 102:612, 1978.PubMedCrossRefGoogle Scholar
  9. 9.
    Gross J., Pitt-Rivers R. Thyroid hormone physiology and biochemistry: triiodothyronine in relation to thyroid physiology. Recent Prog. Horm. Res. 10; 109, 1954.Google Scholar
  10. 10.
    Braverman L.E., Ingbar S.H., Sterling K. Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic human subjects. J. Clin. Invest. 49:855, 1970.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Surks M.I., Schadlow A.R., Stock J.M., Oppenheimer J.H. Determination of iodothyronine absorption and conversion of L-thyroxine (T4) to L-triiodothyronine (T3) using turnover rate techniques. J.Clin. Invest. 52:805, 1973.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Hesch R.D., Brunner G., Soling D.H. Conversion of thyroxine (T4) and triiodothyronine (T3) and the subcellular localisation of the converting enzyme. Clin. Chim. Acta 59:209, 1975.PubMedCrossRefGoogle Scholar
  13. 13.
    Chopra I.J. A study of extrathyroidal conversion of thyroxine (T4) to 3,3′,5′-triiodothyronine (T3) in vitro. Endocrinology 101:453, 1977.PubMedCrossRefGoogle Scholar
  14. 14.
    Visser T.J., Van Der Does-Tobe I., Docter R., Henneman G. Conversion of thyroxine into triiodothyronine by rat liver homogenate. Biochem. J. 150:489, 1975.Google Scholar
  15. 15.
    Visser T.J., Van Der Does-Tobe I., Docter R., Henneman G. Subcellular localization of a rat liver enzyme converting thyroxine into triiodothyronine and possible involvement of essential thiol groups. Biochem. J. 157:479, 1976.PubMedCentralPubMedGoogle Scholar
  16. 16.
    Hufner M., Grussendorf M., Ntokalou M. Properties of the thyroxine (T4) monodeiodinating system in rat liver homogenate. Clin. Chim. Acta 78:251, 1977.PubMedCrossRefGoogle Scholar
  17. 17.
    Chopra I.J. Sulfhydril groups and the monodeiodination of thyroxine to triiodothyronine. Science 199:904, 1978.PubMedCrossRefGoogle Scholar
  18. 18.
    Harris A.R.C., Fang S.L., Hinerfeld L., Braverman L.E., Vagenakis A.G. The role of sulfhydryl gorups on the impaired hepatic 3′,3,5-triiodothyronine generation from thyroxine in the hypothyroid, starved, fetal, and neonatal rodent. J.Clin. Invest. 63:516, 1979.PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kaplan M.M., Utiger R.D. Iodothyronine metabolism in rat liver homogenates. J.Clin. Invest. 61:459, 1978.PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Leonard J.L., Rosenberg I.N. Thyroxine 5′-deiodinase activity of rat kidney: observations on activation by thiols and inhibition by propylthiouracil. Endocrinology 103:2137, 1978.PubMedCrossRefGoogle Scholar
  21. 21.
    Visser T.J. Mechanism of action of iodothyronine-5′-deiodinase. Biochim. Biophys. Acta 569:302, 1979.PubMedCrossRefGoogle Scholar
  22. 22.
    Yamada T., Kaplowitz N. Propylthiouracil: a substrate for the glutathione S-trans-ferases that competes with glutathione. J. Biol. Chem. 255:3508, 1980.PubMedGoogle Scholar
  23. 23.
    Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265, 1951.PubMedGoogle Scholar
  24. 24.
    Chopra I.J., Ho R.S., Lam R. An improved radioimmunoassay of triiodothyronine in serum: its application to clinical and physiological studies. J. Lab. Clin. Med. 80:729, 1972.PubMedGoogle Scholar
  25. 25.
    Lineweaver K., Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56:658, 1934.CrossRefGoogle Scholar
  26. 26.
    Dixon M. The determination of enzyme inhibitor constants. Biochem. J. 55:170, 1953.PubMedCentralPubMedGoogle Scholar
  27. 27.
    Owens C.W., Belcher R.V. A colorimetric micromethod for the determination of glutathione. Biochem. J. 94:705, 1965.PubMedCentralPubMedGoogle Scholar
  28. 28.
    Kaplowitz N. Interaction of azathioprine and glutathione in the liver of the rats. J. Pharmacol. Exp. Ther. 200:479, 1977.PubMedGoogle Scholar
  29. 29.
    Yamada T., Ludwig S., Kuhlenkamp J., Kaplowitz N. Direct protection aganist acetaminophen hepatotoxicity by propylthiouracil: in vivo and in vitro studies in rats and mice. J. Clin. Invest. 67:688, 1981.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Leonard J.L., Rosenberg I.N. Characterization of essential enzyme sulfhydryl groups of thyroxine 5′-deiodinase from rat kidney. Endocrinology 106:444, 1980.PubMedCrossRefGoogle Scholar
  31. 31.
    Visser T.J., Van Overmeeren E. Binding of radioiodinated propylthiouracil to rat liver microsomal fractions: stimulation by substrates for iodothyronine 5′-deiodinase. Biochem. J. 183:167, 1979.PubMedCentralPubMedGoogle Scholar
  32. 32.
    Visser T.J. Mechanism of inhibition of iodothyronine-5′-deiodinase by thioureylenes and sulfite. Biochim. Biophys. Acta 611:371, 1980.PubMedCrossRefGoogle Scholar
  33. 33.
    Keen J.H., Jakoby W.B. Glutathione S-transferases: catalysis of nucleophilic reactions of glutathione. J. Biol. Chem. 253:5654, 1978.PubMedGoogle Scholar
  34. 34.
    Arias I.M., Jacoby W.B. Glutathione: Metabolism and function. Krocc foundation series. Raven Press, New York, 1976, vol. 6.Google Scholar
  35. 35.
    Balsam M., Ingbar S.H. Observations on the factors that control the generation of triiodothyronine from thyroxine in rat liver and the nature of the defect induced by fasting. J.Clin. Invest. 63:1145, 1979.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Lichter M., Fleischner G., Kirsch R., Levi A.J., Kamisaka K., Arias I.M. The role of ligandin and Z protein in the transfer of thyroid hormone from plasma into the liver. Am. J. Physiol. 230:1113, 1976.PubMedGoogle Scholar
  37. 37.
    Ketley J.N., Habig W.H., Jacoby W.B. Binding of non-substrate ligands to the glutathione S-transferases. J. Biol. Chem. 250:8670, 1975.PubMedGoogle Scholar
  38. 38.
    Dillman W., Surks M.I., Oppenheimer J.H. Quantitative aspects of iodothyronine binding by cytosol proteins of rat liver and kidney. Endocrinology 95:492, 1974.PubMedCrossRefGoogle Scholar
  39. 39.
    Maciel R.M.B., Ozawa Y., Chopra I.J. Subcellular localization of thyroxine and reverse triiodothyronine outer ring monodeiodinating activities. Endocrinology 104:365, 1979.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1981

Authors and Affiliations

  • T. Yamada
    • 1
  • I. J. Chopra
    • 1
  • N. Kaplowitz
    • 1
  1. 1.Gastroenterology and Research ServicesVA Wadsworth Medical CenterLos AngelesUSA

Personalised recommendations