Advertisement

Journal of Endocrinological Investigation

, Volume 10, Issue 5, pp 451–458 | Cite as

Cholinergic control of cyclic nucleotide metabolism in human thyroid cells

  • M. L. Brandi
  • C. M. Rotella
  • A. Tanini
  • R. Toccafondi
  • S. M. Aloj
Article

Abstract

In the presence of Ro 20-1724, a selective inhibitor of cyclic nucleotide phosphodiesterase, carbamylcholine increases cAMP and cGMP levels in human thyroid cells in primary culture. The increase of cAMP exhibited at concentrations of carbamylcholine between 10 fM and 10 pM, is dose- and time-dependent, it is maximum after 30 min and is abolished after 60 min. At higher carbamylcholine concentration (10 μM), cAMP increases rapidly, becoming maximum after 15 min, but returns to unstimulated values after 30 min. The increase of cGMP is also dose- dependent (0.1 nM–10 μM); it reaqqches the maximum after 30 min and returns to unstimulated values after 120 min. A significant increase of phosphodiesterase activity is observed at 10 μM carbamylcholine. Atropine, a muscarinic receptor antagonist, blocks carbamylcholine effects on both cAMP and cGMP production without affecting the thyrotropin-induced cAMP accumulation. Hexamethonium, a nicotinic receptor antagonist does not affect the cholinergic effects. In the presence of Ro 20-1724, 10 μM carbamylcholine significantly inhibits the effect of thyrotropin on cAMP production, while the combined addition of low doses of carbamylcholine and thyrotropin (0.1 nM and 10 pM, respectively) results in ah additive effect on cAMP levels. Inhibition of thyrotropin activity on cAMP production, similar to that exerted by 10 μM carbamylcholine is produced by increasing free intracellular calcium; this inhibition is relieved by using a calmodulin-sensitive phosphodiesterase inhibitor, M and B 22948 at 50 μM dose. High concentrations (10 μM) of carbamylcholine increase the adenylate cyclase activity, without any significant effect on the thyrotropin-induced activation of the enzyme. The data presented in this study show, for the first time, that in primary cultures of human thyroid cells, cAMP production is increased by a cholinergic agent acting through muscarinic receptors. Cholinergic activity can either potentiate or inhibit thyrotropin action depending on the concentration of neurotransmitter available. Accelerated catabolism by the activation of the calmonodulin-sensitive phosphodiesterase can explain the inhibitory effect of carbamylcholine on the cellular accumulation of cAMP.

Key-words

Carbamylcholine cyclic nucleotides thyrotropin thyroid cells 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Melander A., Sundler F., Westgren U. Intrathyroidal amines and the synthesis of thyroid hormones. Endocrinology 93: 193, 1973.PubMedCrossRefGoogle Scholar
  2. 2.
    Melander A., Sundler F. Presence and influence of cholinergic nerves in the mouse thyroid. Endocrinology 105: 7, 1979.PubMedCrossRefGoogle Scholar
  3. 3.
    Van Sande J., Dumont J.E., Melander A., Sundler F. Presence and influence of cholinergic nerves in the human thyroid. J. Clin. Endocrinol. Metab. 51: 500, 1980.PubMedCrossRefGoogle Scholar
  4. 4.
    Pastan I., Katzen H. Activation of adenyl cyclase in thyroid homogenates by thyroid stimulating hormone Biochem. Biophys. Res. Commun. 29: 792, 1967.CrossRefGoogle Scholar
  5. 5.
    Kaneko T., Zor U., Field J.B. Thyroid stimulating hormone and prostaglandin E1 stimulation of cyclic 3′,5′-adenosine monophosphate in thyroid slices. Science 163: 1052, 1969.CrossRefGoogle Scholar
  6. 6.
    Yamashita K., Field J.B. Elevation of cyclic 3′,5′ monophosphate levels in dog thyroid slices caused by acetylcholine and sodium chloride. J. Biol. Chem. 247: 7062, 1972.PubMedGoogle Scholar
  7. 7.
    Van Sande J., Erneux C., Dumont J.E. Control and role of cyclic 3′,5′-guanosine monophosphate in the thyroid. Biochem. Biophys. Res. Commun. 62: 168, 1975.PubMedCrossRefGoogle Scholar
  8. 8.
    Van Sande J., Erneux C., Dumont J.E. Negative control action by iodine and acetylcholine mechanism of action in thyroid cells. J. Cyclic Nucleotide Res. 3: 335, 1977.PubMedGoogle Scholar
  9. 9.
    Van Sande J., Decostor C., Dumont J.E. Effects of carbamylcholine and ionophore A-23187 on cyclic 3′5′-AMP and cyclic 3′5′-GMP accumulation in dog thyroid slices. Mol. Cell. Endocrinol. 14: 45, 1979.PubMedCrossRefGoogle Scholar
  10. 10.
    Champion S., Mauchamp J. Muscarinic cholinergic receptors on cultured thyroid cells. I. Biological effects of carbachol and characterization of the receptors. Mol. Pharmacol. 21: 66, 1982.PubMedGoogle Scholar
  11. 11.
    Brandi M.L., Rotella C.M., Tanini A., Toccafondi R. Evidence for alpha-adrenergic receptors acting through the guanylate cyclase system in human thyroid cultured cells. Acta Endocrinol. (Kbh.) 104: 64, 1983.Google Scholar
  12. 12.
    Brandi M.L., Rotella C.M., Lopponi A., Kohn L.D., Aloj S.M., Toccafondi R. Forskolin perturbs cGMP as well as cAMP levels in human thyroid cells. Acta Endocrinol. (Kbh.) 107: 237, 1984.Google Scholar
  13. 13.
    Winand R.J., Kohn L.D. Relationships of thyrotropin to exophtalmic-producing substance: purification of homogeneous glycoproteins containing both activities from [3H]-labeled pituitary extracts. J. Biol. Chem. 245: 967, 1970.PubMedGoogle Scholar
  14. 14.
    Kohn L.D., Winand R.J. Structure of an exophthalmos-producing factor derived from thyrotropin by partial pepsin digestion. J. Biol. Chem. 250: 6503, 1975.PubMedGoogle Scholar
  15. 15.
    McKenzie J.M. The bioassay of thyrotropin in serum. Endocrinology 63: 372, 1958.PubMedCrossRefGoogle Scholar
  16. 16.
    Vitti P., Rotella C.M., Valente W.A., Cohen J., Aloj S.M., Laccetti P., Ambesi-Impiombato F.S., Grollman E.F., Pinchera A., Toccafondi R., Kohn L.D. Characterization of the optimal stimulatory effects of Graves’ monoclonal and serum immunoglobulin G on adenosine 3′,5′-monophosphate production in FRTL-5 thyroid cells: a potential clinical assay. J. Clin. Endocrinol. Metab. 57; 782, 1983.PubMedCrossRefGoogle Scholar
  17. 17.
    Toccafondi R., Aterini S., Medici M.A., Rotella C.M., Tanini A., Zonefrati R. Thyroid stimulating antibody (TSAb) detected in sera of Graves’ patients using human thyroid cell cultures. Clin. Exp. Immunol. 40: 532, 1980.PubMedCentralPubMedGoogle Scholar
  18. 18.
    Jacquemont C., Prunieras M. Culture de longue durée de cellules issue de l’epiderme de cobaye adulte. Pathol. Biol. 17: 243, 1969.PubMedGoogle Scholar
  19. 19.
    Brown B.L., Ekins R.P., Albano J.D.M. Saturation assay for cAMP using endogenous binding protein. In: Greengard, Robinson (Eds.), Advances in cyclic nucleotide research. Raven Press, New York, 1972, Vol. 2, p. 25.Google Scholar
  20. 20.
    Steiner A.L., Wehmann R.E., Parker C.W., Kipnis D.M. Radioimmunoassay for the measurement of cyclic nucleotides. In: Greengard, Robinson (Eds.), Advances in cyclic nucleotide research. Raven Press, New York, 1972, Vol. 2, p. 51.Google Scholar
  21. 21.
    Burton K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62: 315, 1956.PubMedCentralPubMedGoogle Scholar
  22. 22.
    Arcangeli P., Toccafondi R., Rotella C.M., Aterini S., Borrelli D., Loddi L. Dissociation in the response of the adenylate cyclase system to thyrotropin and prostaglandin E2 in human thyroid carcinoma tissue. Cancer 48: 757, 1981.PubMedCrossRefGoogle Scholar
  23. 23.
    Lowry C.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265, 1951.PubMedGoogle Scholar
  24. 24.
    Toccafondi R., Rotella C.M., Tanini A., Fani P., Arcangeli P. Thyrotropin-responsive adenylate cyclase activity in thyroid toxic adenoma. Acta Endocrinol. (Kbh.) 92: 658, 1979.Google Scholar
  25. 25.
    Amir S.M., Carraway Jr. T.F., Kohn L.D., Winand R.J. The binding of thyrotropin to isolate bovine thyroid plasma membranes. J. Biol. Chem. 248: 4092, 1973.PubMedGoogle Scholar
  26. 26.
    Albano J.D.M., Maudsley D.V., Brown B.L., Barnes G.D. A simplified procedure for the determination of adenylate cyclase activity. Biochem. Soc. Trans. 1: 477, 1973.Google Scholar
  27. 27.
    Miot F., Erneux C., Wells J.N., Dumont J.E. The effects of alkylated xanthines on cyclic AMP accumulation in dog thyroid slices exposed to carbamylcholine. Mol. Pharmacol. 25: 261, 1984.PubMedGoogle Scholar
  28. 28.
    Patrono C., Rotella C.M., Toccafondi R., Aterini S., Pinca E., Tanini A., Zonefrati R. Prostacyclin stimulates the adenylate cyclase system of human thyroid tissue. Prostaglandins 22: 105, 1981.PubMedCrossRefGoogle Scholar
  29. 29.
    Toccafondi R., Brandi M.L., Melander A. Vasoactive intestinal peptide stimulation of human thyroid cell function. J. Clin. Endocrinol. Metab. 58: 157, 1984.PubMedCrossRefGoogle Scholar
  30. 30.
    Jakobs K.H., Aktories K., Schultz G. GTP-dpendent inhibition of cardiac adenylate cyclase by muscarinic cholinergic agents. Naunyn — Schmiedebergs Arch. Pharmacol. 310: 113, 1979.PubMedCrossRefGoogle Scholar
  31. 31.
    Oron Y., Kelog J., Larner J. Stable cholinergic muscarinic inhibition of rat parotid adenylate cyclase. FEBS Lett. 94: 331, 1978.PubMedCrossRefGoogle Scholar
  32. 32.
    Meeker R.B., Harden T.K. Muscarinic cholinergic receptor-mediated control of cyclic AMP metabolism: agonist-induced changes in nucleotide synthesis and degradation. Mol. Pharmacol. 23: 384, 1983.PubMedGoogle Scholar
  33. 33.
    Erneux C., VanSande J., Dumont J.M., Boeynaems J.M. Cyclic nucleotide hydrolysis in the thyroid gland. General properties and their role in the interrelations of adenosine 3′,5′-monophosphate. Eur. J. Biochem. 72: 137, 1977.PubMedCrossRefGoogle Scholar
  34. 34.
    Miot F., Dumont J.E., Erneux C. The involvement of a calmodulin-dependent phosphodiesterase in the negative control of carbamylcholine on cyclic AMP levels in dog thyroid slices. FEBS Lett. 151: 273, 1983.PubMedCrossRefGoogle Scholar
  35. 35.
    Marchmont R.J., Houslay M.D. Insulin triggers cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase. Nature 286: 904, 1980.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1987

Authors and Affiliations

  • M. L. Brandi
    • 1
  • C. M. Rotella
    • 1
  • A. Tanini
    • 1
  • R. Toccafondi
    • 1
  • S. M. Aloj
    • 2
    • 3
  1. 1.Clinica Medica IIIUniversity of FirenzeFirenzeItaly
  2. 2.Centro di Endocrinologia ed Oncologia Sperimentale del CNR, and Dipartimento di Biologia e Patologia Cellulare e Molecolare “L. Califano”University of NapoliNapoliItaly
  3. 3.Laboratory of Biochemistry and MetabolismNIDDKBethesdaUSA

Personalised recommendations