Journal of Endocrinological Investigation

, Volume 9, Issue 2, pp 109–114 | Cite as

Effects of danazol on steroidogenesis and gonadotropic responsiveness in isolated human preovulatory follicular cells

  • J. H. Olsson
  • B. Dennefors
  • L. Nilsson


In order to investigate the influence of danazol on steroidogenesis and gonadotropic responsiveness of human follicular cells, granulosa and thecal cells of preovulatory follicles were isolated and separately incubated for short term periods. Human chorionic gonadotropin (hCG) (100 IU/ml), FSH (0.5 IU/ml) and danazol (10 μg/ml) alone or in combination were added to the incubation medium. Following incubation the cellular cyclic adenosine 3′5′ monophosphate (cAMP) levels and the medium content of progesterone (P), androstenedione (A) and 17β-estradiol (E2) were determined. All follicles included in the study were classified as nonatretic and well developed, i.e. less than 3 days before ovulation. Human chorionic gonadotropin caused an increase in cAMP formation in both celltypes and this effect was significantly counteracted by danazol in vitro. In granulosa cells danazol tended to counteract a stimulatory effect of FSH on cAMP formation. No significant influence of danazol was found on the basal steroid formation of both cell types during short term incubation. On the other hand, danazol significantly counteracted the FSH stimulated P formation of the granulosa cells and the hCG stimulated A and E2 formation of the thecal cells. It is concluded that danazol inhibits gonadotropin-stimulated steroidogenesis locally in the human follicular cells and that this effect of danazol is mediated via the cyclic AMP system.


Danazol steroidogenesis gonadotropic responsiveness human follicular cells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Greenblatt R.B., Dmowski W.P., Mahesh V.B., Scholer H.F.L. Clinical studies with an antigonadotropin-danazol. Fertil. Steril. 22: 102, 1971.PubMedGoogle Scholar
  2. 2.
    Dmowski W.P., Cohen M.R. Treatment of endometriosis with an antigonadotropindanazol. A laparoscopic and histologic evaluation. Obstet. Gynecol. 46: 147, 1975.PubMedGoogle Scholar
  3. 3.
    Young M.D. The use of danazol in the management of endometriosis. J. Int. Med. Res. 5(Suppl. 3): 86, 1977.PubMedGoogle Scholar
  4. 4.
    Ulstein M., Netto N., Leonard J., Paulsen C.A. Changes in sperm morphology in men treated with danazol and testosterone. Contraception 12: 437, 1975.PubMedCrossRefGoogle Scholar
  5. 5.
    Colle M.L., Greenblatt R.B. Contraceptive properties of danazol. J. Reprod. Med. 17: 98, 1976.PubMedGoogle Scholar
  6. 6.
    Lauersen N.H. The effect of danazol in the treatment of chronic cystic mastitis. Obstet. Gynecol. 48: 93, 1976.PubMedGoogle Scholar
  7. 7.
    Asch R.H. The use of an impeded androgen-danazol-in the management of benign breast disorders. Am. J. Obstet. Gynecol. 127: 130, 1977.PubMedGoogle Scholar
  8. 8.
    Lee P.A., Thompson R.G., Migeon C.J., Blizzard R.M. The effects of danazol in sexual precocity. Johns Hopkins Med. J. 137: 265, 1975.PubMedGoogle Scholar
  9. 9.
    Wood G.P., Wu C-H., Flickinger G.L., Mikhhail G. Hormonal changes associated with danazol therapy. Obstet. Gynecol. 45: 302, 1975.PubMedGoogle Scholar
  10. 10.
    Guillebaud J., Fraser I.S., Thorburn G.D., Jenkin G. Endocrine effects of danazol in menstruating women. J. Int. Med. Res. 3(Supp. 5): 57, 1977.Google Scholar
  11. 11.
    Barbieri R.L., Canik J.A., Makris A., Todd R.B., Davies I.J., Ryan K.J. Danazol inhibits steroidogenesis. Fertil. Steril. 28: 809, 1977.PubMedGoogle Scholar
  12. 12.
    Menon M., Azhar S., Menon K.M.J. Evidence that danazol inhibits gonadotropin-induced steroidogenesis at a point distal to gonadotropin-receptor interaction and adenosine 3’, 5’ cycle monophosphate formations. Am. J. Obstet. Gynecol. 136: 524, 1980.PubMedGoogle Scholar
  13. 13.
    Henderson K.M., Tsang B.K. Danazol suppresses luteal function in vitro and in vivo. Fertil. Steril. 33: 550, 1980.PubMedGoogle Scholar
  14. 14.
    Milwidsky A., Besch N.F., Besch P.K., Kaufman R.H. Evidence of a possible direct action of danazol on the human ovary. Acta Obstet. Gynecol. Scand. 62: 187, 1983.PubMedCrossRefGoogle Scholar
  15. 15.
    McNatty K.P., Smith D.M., Makris A., Osathanondh R., Ryan K.J. The microenvironment of the human antral follicle: interrelationships among the steroid levels in antral fluid, the population of granulosa cells, and the status of the oocyte in vivo and in vitro. J. Clin. Endocrinol. Metab. 49: 851, 1979.PubMedCrossRefGoogle Scholar
  16. 16.
    Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265, 1951.PubMedGoogle Scholar
  17. 17.
    Gilman A.G. A protein binding assay for adenosine 3’ 5’-cyclic monophosphate. Proc. Natl. Acad. Sci. USA 67: 305, 1970.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Nilsson L., Dennefors B., Hamberger L. Granulosa and thecal cells from human ovarian follicles under growth: steroid formation in vitro and responsiveness to human chorionic gonadotropin. J. Endocrinol. Invest. 7: 323, 1984.PubMedCrossRefGoogle Scholar
  19. 19.
    Dennefors B.L., Nilsson L., Hamberger L. Steroid and adenosine 3’ 5’-monophosphate formation in granulosa and thecal cells from human preovulatory follicles in response to human chorionic gonadotropin. J. Clin. Endocrinol. Metab. 54: 2, 1982.Google Scholar
  20. 20.
    Davidson C., Ross T.A.W., King M.E. Internal report. Sterling-Winthrop Research Institute, 1975.Google Scholar
  21. 21.
    Dennefors B.L. Studies on the endocrine function of the human ovary. Experiments conducted on isolated ovarian compartments. Thesis ISBN 91-7222-423-1, University of Gothenburg, Sweden.Google Scholar
  22. 22.
    Erickson G.F., Hsueh A.J.W., Quigley M.E., Rebar R.W., Yen S.S.C. Functional studies of aromatose activity in human granulosa cells from normal and polycystic ovaries. J. Clin. Endocrinol. Metab. 49: 514, 1979.PubMedCrossRefGoogle Scholar
  23. 23.
    Tsang B.K., Henderson K.M., Armstrong D.T. Effects of danazol on estradiol-17-β and progesterone secretion by porcine ovarian cells in vitro. Am. J. Obstet. Gynecol. 133: 256, 1979.PubMedGoogle Scholar
  24. 24.
    Barbieri R.L., Canik J.A., Ryan K.J. Danazol inhibits steroidogenesis in the rat testis in vitro. Endocrinology 101: 1676, 1977.PubMedCrossRefGoogle Scholar
  25. 25.
    Stillman R.J., Ryan K.J. Danazol inhibits human adrenal 21 and 11-β-hydroxylation. Steroids 35: 251, 1980.PubMedCrossRefGoogle Scholar
  26. 26.
    Asch R.H., Fernandez E.O., Siler-Khodr T.M., Bartke A., Pauerstein C.J. Mechanism of induction of luteal phase defects by danazol. Am. J. Obstet. Gynecol. 136: 932, 1980.PubMedGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1986

Authors and Affiliations

  • J. H. Olsson
    • 1
  • B. Dennefors
    • 1
  • L. Nilsson
    • 1
  1. 1.Department of Obstetrics and GynecologyUniversity of Göteborg, Sahlgren’s HospitalGöteborgSweden

Personalised recommendations