Journal of Endocrinological Investigation

, Volume 20, Issue 8, pp 471–475 | Cite as

The erythrocyte glutathione levels during oral glucose tolerance test

  • Dildar Konukoğlu
  • H. Hatemi
  • E. M. Özer
  • S. Gönen
  • T. Akçay


Erythrocytes glutathione (GSH) levels were measured in erythrocytes from 33 subjects, at baseline and after 2-hour glucose loading in order to investigate the effect of glucose ingestion on the erythrocyte GSH. According to the World Health Organisation criteria 18 subjects had normal glucose tolerance (NGT) (mean age 48±10 years, 10 women, 8 men), 15 subjects had impaired glucose tolerance (IGT) (mean age 52±8 years, 9 women, 6 men). After 12-hour fasting, erythrocyte GSH levels were 40.5±8.06 and 39.27±10.26 mg/dl hemolisate in subjects with NGT and IGT, respectively (p=N.S). After 2-hour glucose loading, erythrocyte GSH levels decreased to 36.01 ±9.4 (p<0.05) and 32.36±5.7 (p<0.005) in subjects with NGT and IGT, respectively. The decrease in erythrocyte GSH levels in subjects with IGT was greater than in NGT individuals (p<0.001). There was negative correlation between glucose, insulin, C-peptide, and erythrocyte GSH levels after glucose loading (p<0.005). Our results suggest that glucose loading induce an oxidative stress in all subjects but this oxidative stress is greater in subjects with IGT than with NGT.


Glutathione insulin oral glucose tolerance C-peptide glucose 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wohaieb S.A., Godin D.V. Alterations in free radical tissue-defense mechanisms in streptozotocin-induced diabetes in rat. Diabetes 36: 1014, 1987.PubMedCrossRefGoogle Scholar
  2. 2.
    Costagliola C. Oxidative state of glutathione in red blood cells and plasma of diabetic patients. In vivo and in vitro study. Clin. Physiol. Biochem. 3: 204, 1990.Google Scholar
  3. 3.
    Bravenboer B., Kappelle A.C., Hamers F.D.T., Buren T., Erkelens D.W., Gispen W.H. Potential use of glutathione for the prevention and treatment of diabetic neuropathy in the streptozotocin-induced diabetic rat. Diabetologia 35: 813, 1992.PubMedCrossRefGoogle Scholar
  4. 4.
    Slonim A.E., Fletcher T., Burke V., Burr I.M. Effect of streptozotocin on red-blood cell reduced glutathione: modification by glucose, nicotinamide, and epinephrine. Diabetes 25: 216, 1982.CrossRefGoogle Scholar
  5. 5.
    Ammon H.P.T., Hamid M. Potentiation of insulin-releasing capacity of tolbutamide by thiols. Arch. Pharmacol 31: 262, 1981.CrossRefGoogle Scholar
  6. 6.
    Paolisso G., Giugliano D., Piza G., Gambardella A., Tesauro P., Varricchio M., D’Onofrio F. Glutathione infusion potentiates glucose-induced insulin secretion in aged patients with impaired glucose tolerance. Diabetes Care 15: 1, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Paolisso G., Maro G., Pizzo G., Sgambato S., Tesauro P., Varricchio M., D’onofrio F. Plasma GSH/GSSG affects glucose homeostasis in healthy subjects and non-insulin-dependent diabetics. J. Physiol. E 435, 1992.Google Scholar
  8. 8.
    Wolff S.P., Dean R.T. Glucose autoxidation and protein modification: the potential role of oxidative glycosylation in diabetes. Biochem. J. 245: 243, 1987.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Hunt J.V., Christopher C.T., Wolff S.P. Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 39: 1420, 1990.PubMedCrossRefGoogle Scholar
  10. 10.
    Tesfamariam B., Cohen R.A. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am. J. Physiol. 263: H321, 1992.PubMedGoogle Scholar
  11. 11.
    Ceriello A., Quatraro A., Giugliano D. Diabetes Mellitus and hypertension: the possible role of hyperglycemia through oxidative stress. Diabetologia 36: 265–266, 1993.PubMedCrossRefGoogle Scholar
  12. 12.
    Ceriello A., Giacomello R., Stel G., Motz E., Tabogo C., Tonutts L., Pirisi M., Fallets E., Bartoli E. Hyperglycemia — induced thrombotic formation in diabetes. The possible role of oxidative stress. Diabetes 44: 924–928, 1995.PubMedCrossRefGoogle Scholar
  13. 13.
    Mariella R., Verrazzo G., Acampora R., La Marca C., Giunta R., Lucarelli C., Paolisso G.C. Glutathione reverses systemic hemodynamic changes induced by acute hyperglycemia in healthy subjects. Am. J. Physiol. 268: E1167–E1173, 1995.Google Scholar
  14. 14.
    Sobey W.J., Beer S.F., Carrington C.A. Sensitivite and specific two site immunoradiometric assay for human insulin and proinsulin. Biochem. J. 260: 535, 1989.PubMedCentralPubMedGoogle Scholar
  15. 15.
    Paolisso G., Salvatore T., Torella S., Spombato S., Varriechio M., D’Onofrio F. Metabolic effects of pulsative insulin infusion in the elderly. Acta Endocrinol. 123: 19, 1990.PubMedGoogle Scholar
  16. 16.
    Beutler E., Duran O., Kelly B.M. Improved method for determination of blood glutathione. J. Lab. Clin. Med. 61: 888, 1963.Google Scholar
  17. 17.
    WHO study group. Diabetes mellitus. Technical report series, No 727 WHO, Geneva, 1985.Google Scholar
  18. 18.
    Reaven G.M., Brand R.J., Chen Y.D.I., Mathur A.K. Insulin resistance and insulin secretion are determinants of oral glucose tolerance in normal individuals. Diabetes 42: 1324, 1993.PubMedCrossRefGoogle Scholar
  19. 19.
    Baynes J.W. Role of oxidative stress in development of complications in diabetes. Diabetes 40: 405, 1991.PubMedCrossRefGoogle Scholar
  20. 20.
    Matsubara L.S., Machado P.E.A. Age-related changes of glutathione content, glutathione reductase and glutathione peroxidase activity of human erythrocytes. Brazilian J. Med. Biol. Res. 24: 449, 1991.Google Scholar
  21. 21.
    Murakami K., Kondo T., Ohtsuka Y., Furiwara Y., Shimada U., Kawakom Y. Impairment of glutathione metabolism in erythrocytes from patients with diabetes mellitus. Metabolism 38: 753, 1989.PubMedCrossRefGoogle Scholar
  22. 22.
    Oberly L., Lowen D., Schedi H., Wilson H., Daobees T.T., Stegint L.D., Dickus M. Effect of insulin and oral glutathione levels and superoxide dismutase activities in organs of rats with streptozocin induced diabetes. Diabetes 35: 503, 1986.CrossRefGoogle Scholar
  23. 23.
    Barnett P.A., Gonzalez R.G., Chylack L.J., Cheng H.M. The effect of oxidation on sorbitol pathway kinetics. Diabetes 35: 426, 1986.PubMedCrossRefGoogle Scholar
  24. 24.
    Williamson J.R., Chang K., Frangos M., Hanan K.S., Ido Y., Kawamura J., Nyengaard J.R., Kilo C., Tilton R.G. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42: 801, 1993.PubMedCrossRefGoogle Scholar
  25. 25.
    Ceriollo A., D’Russo P., Amstad P., Cerutti P. High glucose induces antioxidant enzymes in human endothelial cells in culture. Diabetes 45: 471, 1996.CrossRefGoogle Scholar
  26. 26.
    Jain S.K., McVie R. Effect of glycemic control, race and duration of diabetes on reduced glutathione content in erythrocytes of diabetic patients. Metabolism 43: 306, 1994.PubMedCrossRefGoogle Scholar
  27. 27.
    Kashiwagi A., Asahina T., Ikebuchi M., Tanaka Y., Takagi Y., Nishio Y., Kikkawa R., Shigeta Y. Abnormal glutathione metabolism and increased cytotoxicity caused by H2O2 in human umbilical vein endothelial cells cultured in high glucose medium. Diabetologia 37: 264, 1994.PubMedCrossRefGoogle Scholar
  28. 28.
    Williamson J.R., Chang K., Frangos M., Hasan K.S., Ido Y., Patel V., Rassam S., Newsom R., Wiek J., Kohner E. Retinal blood flow in diabetic retinopathy. Br. Med. J. 305: 1992.Google Scholar
  29. 29.
    Tilton R.G., Baler L.D., Harlow J.E., Smith S.R., Ostrow E., Williamson J.R. Diabetes-induced glomerular dysfunction: links to a more reduced cytosolic ratio of NADH/NAD+. Kidney Int. 41: 778, 1992.PubMedCrossRefGoogle Scholar
  30. 30.
    Hasan K.S., Chang K., Allison W., Faller A., Santiago J.U., Tilton R.G., Williamson J.R. Glucose-induced increases in ocular blood flow are prevented inhibitors of nitric oxide synthase. (Abstract) Invest. Ophthalmol. Vis. Sci. 34: 1127, 1993.Google Scholar
  31. 31.
    Pugliese G., Tilton R.G., Williamson J.R. Glucose induced metal imbalances in the pathogenesis of diabetic vascular disease. Diabetes Metab. Rev. 7: 35, 1971.CrossRefGoogle Scholar
  32. 32.
    Block E.R., Patel J.M., Edwards D. Mechanism of hypoxic injury to pulmonary artery endothelial cell plasma membranes. Am. J. Physiol. 257: C–223, 1989.Google Scholar
  33. 33.
    Hubinont C., Sener A., Malaisse W.Y. Sorbitol content of plasma and erythrocytes during induced short-term hyperglycemia. Clin. Biochem. 14: 19, 1981.PubMedCrossRefGoogle Scholar
  34. 34.
    Corr P.B., Gross R.W., Sobel B.E. Amphipathic metabolites membrane dysfunction in ischemic myocardium. Circ. Res. 55: 1, 1984.CrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1997

Authors and Affiliations

  • Dildar Konukoğlu
    • 1
  • H. Hatemi
    • 2
  • E. M. Özer
    • 2
  • S. Gönen
    • 2
  • T. Akçay
    • 1
  1. 1.Department of Biochemistry Cerrahpaşa Medical FacultyIstanbul UniversityIstanbulTurkey
  2. 2.Department of Internal Medicine, Division of Endocrinology and Metabolism, Cerrahpaşa Medical FacultyIstanbul UniversityIstanbulTurkey

Personalised recommendations