Advertisement

Journal of Endocrinological Investigation

, Volume 34, Issue 5, pp e102–e109 | Cite as

Bisphenol A effect on glutathione synthesis and recycling in testicular Sertoli cells

  • A. F. Gualtieri
  • M. A. Iwachow
  • M. Venara
  • R. A. Rey
  • H. F. Schteingart
Article

Abstract

Background and objective: Controversial effects of bisphenol A (BPA) have been reported on testicular function. These differences might reflect dissimilar exposure conditions. Dose responses to toxicants may be non-linear, e.g. U-shaped, with effects at low and at high levels of exposure and lower or inexistent effects at intermediate levels. Sertoli cells produce high levels of glutathione (GSH) as a cell defense mechanism. In this study, we addressed the question whether the exposure to different doses of BPA could influence Sertoli cell GSH synthesis and recycling. Materials and methods: Primary Sertoli cell cultures were exposed to various doses of BPA (0.5 nM–100 μM). Cell viability was measured as an outcome of toxic effect. GSH cell content was determined to evaluate cell response to toxicant exposure. Glutamate-cysteine ligase catalytic (GCLC) and modulatory (GCLM) subunit expression were assessed to estimate GSH synthesis, and GSH reductase (GR) expression to estimate GSH recycling. Results: BPA 100 μM, but not lower doses, decreased cell viability. BPA 10 and 50 μM, but not lower doses, induced an increment in Sertoli cell GSH levels, due to a rapid upregulation of GCLC and GR and a slower upregulation of GCLM. Conclusions: High doses of BPA are deleterious for Sertoli cells. Intermediate doses do not affect Sertoli cell viability and increase cell content of GSH owing to increased GSH synthesis and recycling enzyme expression. Lower doses of BPA are not capable of eliciting a cell defense response. These observations may explain a non-linear dose response of Sertoli cells to BPA.

Key-words

Bisphenol A sertoli cell glutamate-cysteine ligase glutathione glutathione reductase glutathione-S-transferase 

References

  1. 1.
    vom Saal FS, Cooke PS, Buchanan DL, et al. A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health 1998, 14: 239–60.CrossRefGoogle Scholar
  2. 2.
    Kuiper GGJM, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997, 138: 863–70.PubMedGoogle Scholar
  3. 3.
    Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev 2009, 30: 75–95.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Matsumoto A, Kunugita N, Kitagawa K, et al. Bisphenol A levels in human urine. Environ Health Perspect 2003, 111: 101–4.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 2002, 17: 2839–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Carwile JL, Luu HT, Bassett LS, et al. Polycarbonate bottle use and urinary bisphenol A concentrations. Environ Health Perspect 2009, 117: 1368–72.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Salian S, Doshi T, Vanage G. Perinatal exposure of rats to Bisphenol A affects the fertility of male offspring. Life Sci 2009, 85: 742–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Hunt PA, Susiarjo M, Rubio C, Hassold TJ. The bisphenol A experience: a primer for the analysis of environmental effects on mammalian reproduction. Biol Reprod 2009, 81: 807–13.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol 2007, 24: 139–77.PubMedCrossRefGoogle Scholar
  10. 10.
    Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect 1993, 101: 378–84.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Toppari J, Larsen JC, Christiansen P, et al. Male reproductive health and environmental xenoestrogens. Environ Health Perspect 1996, 104(Suppl 4): 741–803.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Sharpe RM, Skakkebaek NE. Testicular dysgenesis syndrome: mechanistic insights and potential new downstream effects. Fertil Steril 2008, 89: e33–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Ivell R, Bathgate RA. Reproductive Biology of the Relaxin-Like Factor (RLF/INSL3). Biol Reprod 2002, 67: 699–705.PubMedCrossRefGoogle Scholar
  14. 14.
    Rey RA, Musse M, Venara M, Chemes HE. Ontogeny of the androgen receptor expression in the fetal and postnatal testis: its relevance on Sertoli cell maturation and the onset of adult spermatogenesis. Microsc Res Tech 2009, 72: 787–95.PubMedCrossRefGoogle Scholar
  15. 15.
    Nakamura D, Yanagiba Y, Duan Z, et al. Bisphenol A may cause testosterone reduction by adversely affecting both testis and pituitary systems similar to estradiol. Toxicol Lett 2010, 194: 16–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Salian S, Doshi T, Vanage G. Neonatal exposure of male rats to Bisphenol A impairs fertility and expression of sertoli cell junctional proteins in the testis. Toxicology 2009, 265: 56–67.PubMedCrossRefGoogle Scholar
  17. 17.
    Li YJ, Song TB, Cai YY, et al. Bisphenol A exposure induces apoptosis and upregulation of Fas/FasL and caspase-3 expression in the testes of mice. Toxicol Sci 2009, 108: 427–36.PubMedCrossRefGoogle Scholar
  18. 18.
    Kato H, Furuhashi T, Tanaka M, et al. Effects of bisphenol A given neonatally on reproductive functions of male rats. Reprod Toxicol 2006, 22: 20–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Howdeshell KL, Furr J, Lambright CR, Wilson VS, Ryan BC, Gray LE Jr. Gestational and lactational exposure to ethinyl estradiol, but not bisphenol A, decreases androgen-dependent reproductive organ weights and epididymal sperm abundance in the male long evans hooded rat. Toxicol Sci 2008, 102: 371–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Meister A, Anderson ME. Glutathione. Annu Rev Biochem 1983, 52: 711–60.PubMedCrossRefGoogle Scholar
  21. 21.
    Griffith OW. Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 1999, 27: 922–35.PubMedCrossRefGoogle Scholar
  22. 22.
    Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med 1999, 27: 916–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Dickinson DA, Forman HJ. Glutathione in defense and signaling: lessons from a small thiol. Ann N Y Acad Sci 2002, 973: 488–504.PubMedCrossRefGoogle Scholar
  24. 24.
    Den Boer PJ, Mackenbach P, Grootegoed JA. Glutathione metabolism in cultured Sertoli cells and spermatogenic cells from hamsters. J Reprod Fertil 1989, 87: 391–400.CrossRefGoogle Scholar
  25. 25.
    Bauché F, Fouchard MH, Jégou B. Antioxidant system in rat testicular cells. FEBS Lett 1994, 349: 392–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Castellón EA. Glutathione and gamma-glutamyl cycle enzymes in rat testis during sexual maturation. Arch Androl 1994, 33: 179–85.PubMedCrossRefGoogle Scholar
  27. 27.
    Gualtieri AF, Mazzone GL, Rey RA, Schteingart HF. FSH and bFGF stimulate the production of glutathione in cultured rat Sertoli cells. Int J Androl 2009, 32: 218–25.PubMedCrossRefGoogle Scholar
  28. 28.
    Reid LL, Botta D, Lu Y, Gallagher EP, Kavanagh TJ. Molecular cloning and sequencing of the cDNA encoding the catalytic subunit of mouse glutamate-cysteine ligase. Biochim Biophys Acta 1997, 1352: 233–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Reid LL, Botta D, Shao J, Hudson FN, Kavanagh TJ. Molecular cloning and sequencing of the cDNA encoding mouse glutamatecysteine ligase regulatory subunit. Biochim Biophys Acta 1997, 1353: 107–10.PubMedCrossRefGoogle Scholar
  30. 30.
    Kaneko T, Iuchi Y, Kobayashi T, et al. The expression of glutathione reductase in the male reproductive system of rats supports the enzymatic basis of glutathione function in spermatogenesis. Eur J Biochem 2002, 269: 1570–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Eaton DL, Bammler TK. Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol Sci 1999, 49: 156–64.PubMedCrossRefGoogle Scholar
  32. 32.
    Schteingart HF, Rivarola MA, Cigorraga SB. Hormonal and paracrine regulation of gamma-glutamyl transpeptidase in rat Sertoli cells. Mol Cell Endocrinol 1989, 67: 73–80.PubMedCrossRefGoogle Scholar
  33. 33.
    Galdieri M, Ziparo E, Palombi F, Russo MA, Stefanini M. Pure Sertoli Cell Cultures: A New Model for the Study of Somatic-Germ Cell Interactions. J Androl 1981, 2: 249–54.Google Scholar
  34. 34.
    Labarca C, Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 1980, 102: 344–52.PubMedCrossRefGoogle Scholar
  35. 35.
    Venara M, Rey R, Bergadá I, Mendilaharzu H, Campo S, Chemes H. Sertoli cell proliferations of the infantile testis: an intratubularform of Sertoli cell tumor? Am J Surg Pathol 2001, 25: 1237–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Baker MA, Cerniglia GJ, Zaman A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 1990, 190: 360–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72: 248–54.PubMedCrossRefGoogle Scholar
  38. 38.
    Fujii T, Hamaoka R, Fujii J, Taniguchi N. Redox capacity of cells affects inactivation of glutathione reductase by nitrosative stress. Arch Biochem Biophys 2000, 378: 123–30.PubMedCrossRefGoogle Scholar
  39. 39.
    Thompson SA, White CC, Krejsa CM, et al. Induction of glutamatecysteine ligase (gamma-glutamylcysteine synthetase) in the brains of adult female mice subchronically exposed to methylmercury. Toxicol Lett 1999, 110: 1–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Habig WH, Jakoby WB. Assays for differentiation of glutathione S-transferases. Methods Enzymol 1981, 77: 398–405.PubMedCrossRefGoogle Scholar
  41. 41.
    Schteingart HF, Rivarola MA, Cigorraga SB. Hormonal and paracrine regulation of gamma-glutamyl transpeptidase in rat Sertoli cells. Mol Cell Endocrinol 1989, 67: 73–80.PubMedCrossRefGoogle Scholar
  42. 42.
    Galardo MN, Riera MF, Pellizzari EH, Cigorraga SB, Meroni SB. The AMP-activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-b-D-ribonucleoside, regulates lactate production in rat Sertoli cells. J Mol Endocrinol 2007, 39: 279–88.PubMedCrossRefGoogle Scholar
  43. 43.
    Meroni SB, Riera MF, Pellizzari EH, Cigorraga SB. Regulation of rat Sertoli cell function by FSH: possible role of phosphatidylinositol 3-kinase/protein kinase B pathway. J Endocrinol 2002, 174: 195–204.PubMedCrossRefGoogle Scholar
  44. 44.
    Gualtieri AF, Mazzone GL, Rey RA, Schteingart HF. FSH and bFGF stimulate the production of glutathione in cultured rat Sertoli cells. Int J Androl 2009, 32: 218–25.PubMedCrossRefGoogle Scholar
  45. 45.
    Lenzi A, Gandini L, Picardo M. A rationale for glutathione therapy. Hum Reprod 1998, 13: 1419–22.PubMedCrossRefGoogle Scholar
  46. 46.
    Sakaue M, Ohsako S, Ishimura R, et al. Bisphenol-A affects spermatogenesis in the adult rat even at a low dose. J Occup Health 2001, 43: 185–90.CrossRefGoogle Scholar
  47. 47.
    Toyama Y, Suzuki-Toyota F, Maekawa M, Ito C, Toshimori K. Adverse effects of bisphenol A to spermiogenesis in mice and rats. Arch Histol Cytol 2004, 67: 373–81.PubMedCrossRefGoogle Scholar
  48. 48.
    Hughes PJ, McLellan H, Lowes DA, et al. Estrogenic alkylphenols induce cell death by inhibiting testis endoplasmic reticulum Ca(2+) pumps. Biochem Biophys Res Commun 2000, 277: 568–74.PubMedCrossRefGoogle Scholar
  49. 49.
    Iida H, Maehara K, Doiguchi M, Mori T, Yamada F. Bisphenol A-induced apoptosis of cultured rat Sertoli cells. Reprod Toxicol 2003, 17: 457–64.PubMedCrossRefGoogle Scholar
  50. 50.
    Iida H, Mori T, Kaneko T, Urasoko A, Yamada F, Shibata Y. Disturbed spermatogenesis in mice prenatally exposed to an endocrine disruptor, Bisphenol A. Mammal Study 2002, 27: 73–82.CrossRefGoogle Scholar
  51. 51.
    Li LY, Seddon AP, Meister A, Risley MS. Spermatogenic cell-somatic cell interactions are required for maintenance of spermatogenic cell glutathione. Biol Reprod 1989, 40: 317–31.PubMedCrossRefGoogle Scholar
  52. 52.
    Fujii J, Iuchi Y, Matsuki S, Ishii T. Cooperative function of antioxidant and redox systems against oxidative stress in male reproductive tissues. Asian J Androl 2003, 5: 231–42.PubMedGoogle Scholar
  53. 53.
    Lee DY, Lee SS, Joo WA, Lee EJ, Kim CW. Analysis of differentially regulated proteins in TM4 cells treated with bisphenol A. Biosci Biotechnol Biochem 2004, 68: 1201–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Fiorini C, Tilloy-Ellul A, Chevalier S, Charuel C, Pointis G. Sertoli cell junctional proteins as early targets for different classes of reproductive toxicants. Reprod Toxicol 2004, 18: 413–21.PubMedCrossRefGoogle Scholar
  55. 55.
    Tabuchi Y, Zhao QL, Kondo T. DNA microarray analysis of differentially expressed genes responsive to bisphenol A, an alkylphenol derivative, in an in vitro mouse Sertoli cell model. Jpn J Pharmacol 2002, 89: 413–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Tabuchi Y, Kondo T. cDNA microarray analysis reveals chop-10 plays a key role in Sertoli cell injury induced by bisphenol A. Biochem Biophys Res Commun 2003, 305: 54–61.PubMedCrossRefGoogle Scholar
  57. 57.
    Olea N, Pulgar R, Pérez P, et al. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect 1996, 104: 298–305.PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Li MW, Mruk DD, Lee WM, Cheng CY. Disruption of the blood-testis barrier integrity by bisphenol A in vitro: is this a suitable model for studying blood-testis barrier dynamics? Int J Biochem Cell Biol 2009, 41: 2302–14.PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Ikezuki Y, Tsutsumi O, Takai Y, Kamei Y, Taketani Y. Determination of bisphenol A concentrations in human biological fluids reveals significant early prenatal exposure. Hum Reprod 2002, 17: 2839–41.PubMedCrossRefGoogle Scholar
  60. 60.
    Li YJ, Song TB, Cai YY, et al. Bisphenol A exposure induces apoptosis and upregulation of Fas/FasL and caspase-3 expression in the testes of mice. Toxicol Sci 2009, 108: 427–36.PubMedCrossRefGoogle Scholar
  61. 61.
    Kabuto H, Hasuike S, Minagawa N, Shishibori T. Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environ Res 2003, 93: 31–5.PubMedCrossRefGoogle Scholar
  62. 62.
    Giannattasio A, De RM, Smeraglia R, et al. Glutathione peroxidase (GPX) activity in seminal plasma of healthy and infertile males. J Endocrinol Invest 2002, 25: 983–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Diaz D, Krejsa CM, White CC, Keener CL, Farin FM, Kavanagh TJ. Tissue specific changes in the expression of glutamate-cysteine ligase mRNAs in mice exposed to methylmercury. Toxicol Lett 2001, 122: 119–29.PubMedCrossRefGoogle Scholar
  64. 64.
    Thompson JA, White CC, Cox DP, et al. Distinct Nrf1/2-independent mechanisms mediate As 3+-induced glutamate-cysteine ligase subunit gene expression in murine hepatocytes. Free Radic Biol Med 2009, 46: 1614–25.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Jaeg JP, Perdu E, Dolo L, Debrauwer L, Cravedi JP, Zalko D. Characterization of new bisphenol a metabolites produced by CD1 mice liver microsomes and S9 fractions. J Agric Food Chem 2004, 52: 4935–42.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2011

Authors and Affiliations

  • A. F. Gualtieri
    • 1
  • M. A. Iwachow
    • 1
  • M. Venara
    • 1
  • R. A. Rey
    • 1
    • 2
  • H. F. Schteingart
    • 1
  1. 1.Centro de Investigaciones Endocrinológicas (CEDIE-CONICET)Hospital de Niños “R. Gutiérrez”, Gallo 1330Buenos AiresC1425EFDArgentina
  2. 2.Departamento de Histología, Biología Celular, Embriología y Genética, Facultad de MedicinaUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations