Journal of Endocrinological Investigation

, Volume 21, Issue 1, pp 56–63 | Cite as

Effects of 3-month nifedipine treatment on endocrine-metabolic parameters in patients with abdominal obesity and mild hypertension

  • M. Maccario
  • S. E. Oleandri
  • E. Avogadri
  • R. Rossetto
  • S. Grottoli
  • M. Procopio
  • F. Camanni
  • E. Ghigo


It is widely accepted that abdominal obesity presents with exaggerated insulin secretion, insulin resistance and a trend toward glucose intolerance. Hypertension is frequently associated to abdominal obesity, and hyperinsulinism could play a role in its pathogenesis. Some studies reported that Ca-antagonists positively influence insulin sensitivity and glucose tolerance in obese patients with normal or elevated blood pressure. However, other studies reported worsening of metabolic balance during treatment with Ca-antagonists in hypertensive non-insulin-dependent diabetes mellitus (NIDDM) patients and in normal subjects. We studied 19 patients with abdominal obesity, mild hypertension and insulin resistance on balanced, mild hypocaloric diet (1400 Kcal), to verify the effects of the Ca-antagonist nifedipine on both basal and oral glucose tolerance test (OGTT)-induced glucose and insulin levels as well as on IGF-I basal and DHEA-S levels and fat mass (FM). To achieve this goal, 10 hypertensive obese subjects (HOB-NIFE, 3 males, 7 females, mean age±SD 44.6±1.7 yr; body mass index (BMI) 37.1±2.5 Kg/m2, WHR 0.95±0.02) received 3-month treatment with nifedipine (Adalat Crono 30 Bayer, 1 tab daily) while other 9 hypertensive obese (HOB, 3 males, 6 females, 42±2.4 yr, BMI 35.8±1.8 Kg/m2, WHR 0.91±0.03) were studied during diet only. The same parameters were studied also in 8 normotensive obese patients (OB: 3 males, 5 females, 48.1±2.1 yr, BMI 35.8±2.4 Kg/m2, WHR 0.90±0.03) on the same balanced hypocaloric diet. Basal systolic (SBP) and diastolic (DBP) blood pressure levels in HOB-NIFE and HOB were similar. At baseline, all groups had similar basal and OGTT-induced glucose, insulin and glucose insulin ratio (GIR) levels as well as IGF-I and DHEA-S levels. After 3 months BMI fell to the same extent in all groups (p<0.05 vs baseline) while WHR and FFM/FM ratio did not change. SBP and DBP decreased HOB-NIFE (p<0.02) but also during diet alone in both HOB and OB, though to a lesser extent (p<0.05). Both basal and OGTT-stimulated glucose and insulin levels as well as IGF-I and DHEA-S levels were not modified in HOB-NIFE as well as in HOB and OB. In conclusion, our data indicate that nifedipine treatment does not modify glucose tolerance as well as insulin secretion and sensitivity, IGF-I and DHEA-S levels in hypertensive abdominal obese patients. Thus, nifedipine treatment has no detrimental effects on endocrine-metabolic balance in hypertensive obese patients.


Obesity nifedipine glucose insulin IGF-I DHEA-S blood pressure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Karam J.H., Grodsky G.M., Forsham P.H. Excessive insulin response to glucose in obese subjects measured by immunochemical assay. Diabetes 12: 197, 1963.PubMedGoogle Scholar
  2. 2.
    Polosky K.S., Given B.D., Van Cauter E. 24-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J. Clin. Invest. 82: 442, 1988.CrossRefGoogle Scholar
  3. 3.
    Koman O.G., Insel J., Saekow M., Olefky J.M. Mechanism of insulin resistance in human obesity. Evidence for receptor and post-receptor defects. J. Clin. Invest. 65: 1273, 1980.Google Scholar
  4. 4.
    Reaven G.M. Role of insulin resistance in human disease. Diabetes 37: 1595, 1988.PubMedCrossRefGoogle Scholar
  5. 5.
    Stamler R., Stamler J., Riedlinger W.F., Algera G., Roberts R.H. Findings in hypertension screening of 1 million Americans. JAMA 240: 1607, 1978.PubMedCrossRefGoogle Scholar
  6. 6.
    Landsberg L. Hyperinsulinemia: possible role in obesity-induced hypertension. Hypertension 19(suppl I): I–61, 1992.Google Scholar
  7. 7.
    DeFronzo R.A., Ferranini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 14: 3, 1991.CrossRefGoogle Scholar
  8. 8.
    Landsberg L., Krieger D.L. Obesity, metabolism and the sympathetic nervous system. Am. J. Hypertens. 2: 1255, 1989.Google Scholar
  9. 9.
    Ferranini E. Insulin and blood pressure: possible role of haemodynamics. Clin. Exp. Hypertens. A14: 271, 1992.CrossRefGoogle Scholar
  10. 10.
    Ganrot P.O. Insulin resistance syndrome: possible key role of blood flow in resting muscle. Diabetologia 36: 876, 1993.PubMedCrossRefGoogle Scholar
  11. 11.
    Beer N.A., Jakubowicz D.J., Beer R.M., Arocha I.R., Nestler J.E. Effects of nitrendipine on glucose tolerance and serum insulin and dehydroepiandrosterone sulfate levels in insulin resistant obese and hypertensive men. J. Clin. Endocrinol. Metab. 76: 178, 1993.PubMedGoogle Scholar
  12. 12.
    Tuck M.L., Bravo E.L., Krakof L.R., Friedman C.P., and the Modern Approach to the Treatment of Hypertension Study Group. Endocrine and renal effects of nifedipine gastrointestinal therapeutic system in patients with essential hypertension. Results of a multicentre trial. Am. J. Hypertens. 3: 333s, 1990.PubMedGoogle Scholar
  13. 13.
    Valensi P., Uzzan B., Attali J.R., Perret G. Effects of nifedipine and nitrendipine in insulin secretion in obese patients. J. Cardiovasc. Pharmacol. 18(suppl 1): s91, 1991.PubMedCrossRefGoogle Scholar
  14. 14.
    Charles S., Ketekslegers J., Lambert A. Hyperglycemic effect of nifedipine. Br. Med. J. 283: 19, 1981.CrossRefGoogle Scholar
  15. 15.
    Giuliano D., Torella R., Cacciapuoti F., Gentile S., Verza M., Varricchio M. Impairment of insulin secretion by nifedipine. Eur. J. Clin. Pharmacol. 18: 395, 1980.CrossRefGoogle Scholar
  16. 16.
    Stein P.P., Black H.R. Drug treatment of hypertension in patient with diabetes mellitus. Diabetes Care 14: 425, 1991.PubMedCrossRefGoogle Scholar
  17. 17.
    Marin P., Kvist H., Lindstedt G., Sjostrom L., Biontorp P. Low concentration of insulin-like growth factor-I in abdominal obesity. Int. J. Obes. 17: 83, 1993.Google Scholar
  18. 18.
    Jakubowicz D.J., Beer N.A., Beer R.M., Nestler J.E. Disparate effects of weight reduction by diet on serum dehydroepiandrosterone-sulfate levels in obese men and women. J. Clin. Endocrinol. Metab. 80: 3373, 1995.PubMedGoogle Scholar
  19. 19.
    Rasmussen M.H., Hvidberg A., Juul A., Main K.M., Gotfredsen A., Shakkebae N.E., Hilsted J. Massive weight loss restores 24-hour growth hormone release profiles and serum insulin-like growth factor-I levels in obese subjects. J. Clin. Endocrinol. Metab. 80: 1407, 1995.PubMedGoogle Scholar
  20. 20.
    Thissen J.P., Ketelslegers J.M., Underwood L.E. Nutritional regulation of the insulin-like growth factors. Endocr. Rev. 15: 80, 1994.PubMedGoogle Scholar
  21. 21.
    Nestler J.E., Clore J.N., Strauss J.F., Blackard W.G. The effect of hyperinsulinemia on serum testosterone, progesterone, dehydroepiandrosterone sulfate, and cortisol levels in normal women and in a woman with hyperandrogenism, insulin resistance, and acanthosis nigricans. J. Clin. Endocrinol. Metab. 64: 180, 1987.PubMedCrossRefGoogle Scholar
  22. 22.
    Houston B., O’Neil I.E. Insulin and growth hormone act synergistically to stimulate insulin-like growth factor-I production by cultured chicken hepatocytes. J. Endocrinol. 128: 389, 1991.PubMedCrossRefGoogle Scholar
  23. 23.
    Jones J.I., Clemmons D.R. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 16: 1, 1995.CrossRefGoogle Scholar
  24. 24.
    Fifth Report on the Joint National Committee on Detection, evaluation, and treatment of high blood pressure (JNC V). Arch. Intern. Med. 153: 154, 1993.Google Scholar
  25. 25.
    Caro J.F. Insulin resistance in obese and nonobese man. J. Clin. Endocrinol. Metab. 73: 691, 1991.PubMedCrossRefGoogle Scholar
  26. 26.
    National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28: 1039, 1979.CrossRefGoogle Scholar
  27. 27.
    Devis G., Somers, Van Obberghen E., Malaisse W.J. Calcium antagonists and islet function. Inhibition by verapamil. Diabetes 24: 547, 1975.CrossRefGoogle Scholar
  28. 28.
    Dominic J., Miller R.E., Anderson J., McAllister R. Pharmacology of verapamil. Impairment of glucose tolerance by verapamil in the conscious dog. Pharmacology 20: 196, 1980.PubMedCrossRefGoogle Scholar
  29. 29.
    Westfall M.V., Sayeed M.M. Effect of diltiazem on skeletal muscle 3-O-methylglucose transport in bacteriemic rats. Am. J. Physiol. 256: R716, 1989.PubMedGoogle Scholar
  30. 30.
    Bursztyn M., Raz I., Mekler J., Ben-Ishay D. Nitrendipine improves glucose tolerance and deoxyglucose uptake in hypertensive rats. Hypertension 23: 1051, 1994.PubMedCrossRefGoogle Scholar
  31. 31.
    Andronico G., Piazza G., Mangano M.T., Mula G., Cerasola G. Nifedipine vs enalapril in treatment of hypertensive patients with glucose intolerance. J. Cardiovasc. Pharmacol. 18(Suppl. 1): 552, 1991.Google Scholar
  32. 32.
    Giugliano D., Saccomanno F., Paolisso G., et al. Nicardipine does not cause deterioration of glucose homeostasis in man: a placebo controlled study in elderly hypertensive with and without diabetes mellitus. Eur. J. Clin. Pharmacol. 43: 39, 1992.PubMedCrossRefGoogle Scholar
  33. 33.
    Morris A.D., Donnelly R., Connel J.M.C., Reid J.L. Metabolic effects of lacidipine: a placebo-controlled study using the euglycemic hyperinsulinemic clamp. Br. J. Clin. Pharmacol. 35: 40, 1993.PubMedCentralPubMedGoogle Scholar
  34. 34.
    Shen W.H.H., Swislockii A.L.M., Hoffman B., Chen Y.-D.Z., Reaven G.M. Comparison of the effects of atenolol and nitrendipine on glucose, insulin and lipid metabolism in patients with hypertension. Am. J. Hypertens. 4: 199, 1991.CrossRefGoogle Scholar
  35. 35.
    Byyny R.L., Lo Verde M., Lloyd S., et al. Cytosolic calcium and insulin resistance in elderly patients with essential hypertension. Am. J. Hypertens. 5: 459, 1992.PubMedGoogle Scholar
  36. 36.
    Draznin B., Susman K.E., Echel R.H., Kao M., Yost T., Sherman N.A. Possible role of cytosolic free calcium concentrations in mediating insulin resistance of obesity and hyperinsulinemia. J. Clin. Invest 82: 1848, 1988.PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Fagerberg B., Andersson O.K., Isaksson B., Bjontorp P. Blood pressure control during weight reduction in obese hypertensive men: separate effects of sodium and energy restriction. Br. Med. J. 288: 7, 11, 1984.CrossRefGoogle Scholar
  38. 38.
    Schriock E.D., Buffington C.K., Hubert G.D., et al Divergent correlation of circulatory dehydroepiandrosterone sulfate and testosterone with insulin levels and insulin receptors binding. J. Clin. Endocrinol. Metab. 66: 1329, 1988.PubMedCrossRefGoogle Scholar
  39. 39.
    Hafner S.M., Valdez R.A., Mykkanen L., Stern M.P., Kats M.S. Decreased testosterone and dehydroepiandrosterone sulfate concentrations are associated with increased insulin and glucose concentration in non diabetic men. Metabolism 43: 599, 1994.CrossRefGoogle Scholar
  40. 40.
    Pasquali R., Cantobelli S., Vicennati V., Casimirri F., Spinucci G., De lasio R., Mesini P., Boschi S., Nestler J.E. Nitrendipine treatment in women with polycystic ovarian syndrome: evidence for a lack of effects of calcium channel blockers on insulin, androgens and sex hormone-binding globulin. J. Clin. Endocrinol. Metab. 80: 3346, 1995.PubMedGoogle Scholar
  41. 41.
    Clemmons D.R., Van Wyk J.J. Factors controlling blood concentrations of somatomedin C. J. Clin. Endocr. Metab. 13: 113, 1984.CrossRefGoogle Scholar
  42. 42.
    Villafuerte B.C., Koop B.L., Pao C.I., Phillips L.S. Glucocorticoid regulation of insulin-like growth factor-binding protein-3. Endocrinology 136: 1928, 1995.PubMedGoogle Scholar
  43. 43.
    Veldhuis J.D., Iranmanesh A., Ho K.K.Y., et al. Dual defects in pulsatile growth hormone secretion and clearance subserve the hyposomatotropism of obesity in man. J. Clin. Endocrinol. Metab. 72: 51, 1991.PubMedCrossRefGoogle Scholar
  44. 44.
    Williams T., Berelowitz M., Joffe S.N., et al. Impaired growth hormone responses to growth hormone-releasing factor in obesity. N. Engl. J. Med. 311: 1403, 1984.PubMedCrossRefGoogle Scholar
  45. 45.
    Poulos J.E., Legget-Frazier N., Khazanie P., Long S., Sportsman R., MacDonald K., Caro J.F. Circulating insulin-like growth factor I concentrations in clinically severe obese patients with and without NIDDM in response to weight loss. Horm. Metab. Res. 26: 478, 1994.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1998

Authors and Affiliations

  • M. Maccario
    • 1
  • S. E. Oleandri
    • 1
  • E. Avogadri
    • 1
  • R. Rossetto
    • 1
  • S. Grottoli
    • 1
  • M. Procopio
    • 1
  • F. Camanni
    • 1
  • E. Ghigo
    • 1
  1. 1.Divisione di Endocrinologia, Dipartimento di Medicina InternaUniversità di TorinoTorinoItaly

Personalised recommendations