Skip to main content
Log in

Coenzyme Q10 and male infertility

  • Review Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

We had previously demonstrated that Coenzyme Q10 [(CoQ10) also commonly called ubiquinone]is present in well-measurable levels in human seminal fluid, where it probably exerts important metabolic and antioxidant functions; seminal CoQ10 concentrations show a direct correlation with seminal parameters (count and motility). Alterations of CoQ10 content were also shown in conditions associated with male infertility, such as asthenozoospermia and varicocele (VAR). The physiological role of this molecule was further clarified by inquiring into its variations in concentrations induced by different medical or surgical procedures used in male infertility treatment. We therefore evaluated CoQ10 concentration and distribution between seminal plasma and spermatozoa in VAR, before and after surgical treatment, and in infertile patients after recombinant human FSH therapy. The effect of CoQ10 on sperm motility and function had been addressed only through some in vitro experiments. In two distinct studies conducted by our group, 22 and 60 patients affected by idiopathic asthenozoospermia were enrolled, respectively. CoQ10 and its reduced form, ubiquinol, increased significantly both in seminal plasma and sperm cells after treatment, as well as spermatozoa motility. A weak linear dependence among the relative variations, at baseline and after treatment, of seminal plasma or intracellular CoQ10, ubiquinol levels and kinetic parameters was found in the treated group. Patients with lower baseline value of motility and CoQ10 levels had a statistically significant higher probability to be responders to the treatment. In conclusion, the exogenous administration of CoQ10 increases both ubiquinone and ubiquinol levels in semen and can be effective in improving sperm kinetic features in patients affected by idiopathic asthenozoospermia

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile men. Fertil Steril 1992, 47: 409–11.

    Google Scholar 

  2. MacLeod J. The role of oxygen in the metabolism and motility of human spermatozoa. Am J Physiol 1943, 138: 512–8.

    CAS  Google Scholar 

  3. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction 2001, 122: 497–506.

    Article  PubMed  CAS  Google Scholar 

  4. Agarwal A, Saleh RA. Role of oxidants in male infertility: rationale, significance and treatment. Urol Clin N Am 2002, 29: 817–27.

    Article  Google Scholar 

  5. Jones R, Mann T, Sherins R. Peroxidative breakdown of phospholipids in human spermatozoa, spermicidal properties of fatty acid peroxides, and protective action of seminal plasma. Fertil Steril 1979, 31: 531–7.

    PubMed  CAS  Google Scholar 

  6. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod 1989, 41: 183–97.

    Article  PubMed  CAS  Google Scholar 

  7. Sharma RK, Agarwal A. Role of reactive oxygen species in male infertility. Urology 1996, 48: 835–50.

    Article  PubMed  CAS  Google Scholar 

  8. Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and superoxide in human spermatozoa: superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl 1987, 8: 338–48.

    PubMed  CAS  Google Scholar 

  9. Aitken RJ. Molecular mechanisms regulating sperm function. Mol Hum Reprod 1997,3: 169–73.

    Article  PubMed  CAS  Google Scholar 

  10. Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 1994, 344: 721–4.

    Article  PubMed  CAS  Google Scholar 

  11. Cummins JM, Jequier AM, Kan R. Molecular biology of human male infertility: links with aging, mitochondrial genetics, and oxidative stress? Mol Reprod Dev 1994, 37: 345–62.

    Article  PubMed  CAS  Google Scholar 

  12. Geva E, Lessino JB, Lerner-Geva L, Amit A. Free radicals, antioxidants and human spermatozoa: clinical implications. Hum Reprod 1998, 13: 1422–4.

    Article  PubMed  CAS  Google Scholar 

  13. Wolf DE, Hagopian SS, Lewis RG, Voglmayr JK, Fairbanks G. Lateral regionalization and diffusion of a maturation-dependent antigen in the ram sperm plasma membrane. J Cell Biol 1996, 102: 1826–31.

    Article  Google Scholar 

  14. Myles DG, Primakoff P. Localized surface antigens of guinea pig sperm migrate to new regions prior to fertilization. J Cell Biol 1984, 99: 1634–41.

    Article  PubMed  CAS  Google Scholar 

  15. Gaunt SJ, Brown CR, Jones R. Identification of mobile and fixed antigens on the plasma membrane of rat spermatozoa using monoclonal antibodies. Exp Cell Res 1983, 144: 275–84.

    Article  PubMed  CAS  Google Scholar 

  16. Hall JC, Hadley J, Doman T. Correlation between changes in rat sperm membrane lipids, protein, and the membrane physical state during epididymal maturation. J Androl 1991, 12: 76–87.

    PubMed  CAS  Google Scholar 

  17. Lenzi A, Gandini L, Picardo M. A rationale for glutathione therapy. Hum Reprod 1998, 13: 1419–22.

    Article  PubMed  CAS  Google Scholar 

  18. Wolff H, Politch JA, Martinez A, Haimovici F, Hill JA, Anderson DJ. Leukocytospermia is associated with poor semen quality. Fertil Steril 1990, 53: 528–36.

    PubMed  CAS  Google Scholar 

  19. Johnson L, Varner DD. Effect of daily spermtozoan production but not age on transit time of spermatozoa through the human epididymis. Biol Reprod 1988, 39: 812–7.

    Article  PubMed  CAS  Google Scholar 

  20. Ford WCL, Whittington K. Antioxidant treatment for male subfertility: a promise that remains unfulfilled. Hum Reprod 1998, 13: 1416–9.

    Article  PubMed  CAS  Google Scholar 

  21. Sakkas D, Mariethoz E, St. John JC. Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res 1999, 251: 350–5.

    Article  PubMed  CAS  Google Scholar 

  22. Irvine DS, Twigg J, Gordon E, Fulton N, Milne P, Aitken RJ. DNA integrity in human spermatozoa: relationship with semen quality. J Androl 2000, 21: 33–44.

    PubMed  CAS  Google Scholar 

  23. Donnelly ET, O’Connell M, McClure N, Lewis SE. Differences in nuclear DNA fragmentation and mitochondrial integrity of semen and prepared human spermatozoa. Hum Reprod 2000, 15: 1552–61.

    Article  PubMed  CAS  Google Scholar 

  24. Russell LD. Editorial: The perils of sperm release — ‘let my children go’. Int J Androl 1991,14: 307–11.

    Article  PubMed  CAS  Google Scholar 

  25. Huszar G, Vigue L. Correlation between the rate of lipid peroxidation and cellular maturity as measured by creatine kinase activity in human spermatozoa. J Androl 1994, 15: 71–7.

    PubMed  CAS  Google Scholar 

  26. Zalata A, Hafez T, Comhaire F. Evaluation of the role of reactive oxygen species in male infertility. Hum Reprod 1995, 10: 1444–51.

    Article  PubMed  CAS  Google Scholar 

  27. Parinaud J, Le Lannou D, Vieitez G, Griveau JF, Milhet P, Richoilley G. Enhancement of motility by treating spermatozoa with an antioxidant solution (Sperm-Fit) following ejaculation. Hum Reprod 1997, 12: 2434–6.

    Article  PubMed  CAS  Google Scholar 

  28. Babior BM, Curnutte JT, McMurrich BJ. The particulate superoxideforming system in human neutrophils. Properties of the system and further evidence supporting its participation in the respiratory burst.J Clin Invest 1976, 58: 989–96.

    CAS  Google Scholar 

  29. Aitken RJ, Buckingham D, West K, Wu FC, Zikopoulous K, Richardson DW. Differential contribution of leukocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. J Reprod Fertil 1992, 94: 451–62.

    Article  PubMed  CAS  Google Scholar 

  30. Griveau JF, Dumont E, Renard P, Callegari JP, Le Lannou D. Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spematozoa. J Reprod Fertil 1995, 103: 17–26.

    Article  PubMed  CAS  Google Scholar 

  31. Aitken RJ, West K, Buckingham D. Leukocytic infiltration into the human ejaculate and its association with semen quality, oxidative stress, and sperm function. J Androl 1994, 15: 343–52.

    PubMed  CAS  Google Scholar 

  32. Aitken RJ, Buckingham DW, Brindle J, Gomez E, Baker HW, Irvine DS. Analysis of sperm movement in relation to the oxidative stress created by leukocytes in washed sperm preparation and seminal plasma. Hum Reprod 1995, 10: 2061–71.

    PubMed  CAS  Google Scholar 

  33. Wolff H. The biologic significance of white blood-cells in semen. Fertil Steril 1995, 63: 1143–57.

    PubMed  CAS  Google Scholar 

  34. Zini A, De Lamirande E, Gagnon C. Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl 1993, 16: 183–8.

    Article  PubMed  CAS  Google Scholar 

  35. Smith R, Vantman D, Ponce J, Escobar J, Lissi E. Total antioxidant capacity of human seminal plasma. Hum Reprod 1996, 11: 1655–60.

    Article  PubMed  CAS  Google Scholar 

  36. Lewis SE, Boyle PM, McKinney KA, Young IS, Thompson W. Total antioxidant capacity of seminal plasma is different in fertile and infertile men. Fertil Steril 1995, 64: 868–70.

    PubMed  CAS  Google Scholar 

  37. Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ Jr, Agarwal A. The reactive species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod 1999, 14: 2801–7.

    Article  PubMed  CAS  Google Scholar 

  38. Pasqualotto FF, Sharma RK, Kobayashi H, Nelson DR, Thomas AJ Jr, Agarwal A. Oxidative stress in normospermic men undergoing infertility evaluation. J Androl 2001, 22: 316–22.

    PubMed  CAS  Google Scholar 

  39. Hendin BN, Kolettis PN, Sharma RK, Thomas AJ Jr, Agarwal A. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol 1999, 161: 1831–4.

    Article  PubMed  CAS  Google Scholar 

  40. Aksoy H, Aksoy Y, Ozbey I, Altuntas I, Akcay F. The relationship between varicocele and semen nitric oxide concentrations. Urol Res 2000, 28: 357–9.

    Article  PubMed  CAS  Google Scholar 

  41. Saleh RA, Agarwal A, Sharma RK, Nelson DR, Thomas AJ. Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril 2002, 78: 491–9.

    Article  PubMed  Google Scholar 

  42. Pasqualotto FF, Sharma RK, Potts JM, Nelson DR, Thomas AJ, Agarwal A. Seminal oxidative stress in patients with chronic prostatitis. Urology 2000, 55: 881–5.

    Article  PubMed  CAS  Google Scholar 

  43. Depuydt CE, Bosmans E, Zalata A, Schoonjans F, Comhaire F. The relation between reactive oxygen species and cytokines in andro-logical patients with or without male accessory gland infection. J Androl 1996, 17: 699–707.

    PubMed  CAS  Google Scholar 

  44. Pasqualotto FF, Sharma RK, Nelson DR, Thomas AJ, Agarwal A. Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril 2000, 73: 459–64.

    Article  PubMed  CAS  Google Scholar 

  45. Zini A, O’Bryan M, Schlegel PN. Nitric oxide synthase activity in human seminal plasma. Urology 2001, 58: 85–9.

    Article  PubMed  CAS  Google Scholar 

  46. Huang C, Li J, Zheng R, Cui K. Hydrogen peroxide-induced apoptosis in human hepatoma cells is mediated by CD95(APO-1/Fas) receptor/ligand system and may involve activation of wild-type p53. Mol Biol Rep 2000, 27: 1–11.

    Article  PubMed  CAS  Google Scholar 

  47. Sayers TJ, Brooks AD, Seki N, et al. T cell lysis of murine renal cancer: multiple signalling pathways for cell death via Fas. J Leukoc Biol 2000,68: 81–6.

    PubMed  CAS  Google Scholar 

  48. Mancini A, Meucci E, Bianchi A, Milardi D, De Marinis L, Littarru G. Antioxidant systems in human seminal plasma: physiopathological meaning and new perspectives. In: Panglossi HV ed. “Antioxidants: New Research”, New York: Nova Pub. 2006, 131–47.

    Google Scholar 

  49. Dallner G, Stocker R. Coenzyme Q10. Encyclopedia of Dietary Supplements 2005, 121-31.

  50. Groneberg DA, Kindermann B, Althammer M, et al. Coenzyme Q10 affects expression of genes involved in cell signalling, metabolism and transport in human CaCo-2 cells. Int J Biochem Cell Biol 2005, 37: 1208–18.

    Article  PubMed  CAS  Google Scholar 

  51. Fawcett DW. The mammalian spermatozoon. Dev Biol 1975, 44: 394–436.

    Article  PubMed  CAS  Google Scholar 

  52. Kalen A, Appelkvist EL, Chojnacki T, Dallner G. Nonaprenyl-4-hydroxybenzoate transferase, an enzyme involved in ubiquinone biosynthesis in endoplasmic reticulum-Golgi system of rat liver. J Biol Chem 1990, 265: 1158–64.

    PubMed  CAS  Google Scholar 

  53. Mancini A, De Marinis L, Oradei A, Hallgass ME, Conte G, Pozza D, Littarru G. Coenzyme Q10 concentrations in normal and pathological human seminal fluid. J Androl 1994, 15: 591–4.

    PubMed  CAS  Google Scholar 

  54. World Health Organization (WHO). Laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. Cambridge: Cambridge University Press, 1999.

    Google Scholar 

  55. Hirsh AV, Cameron KM, Tyler JP, Simpson J, Pryor JP. The Doppler assessment of varicoceles and internal spermatic vein reflux in infertile men. Br J Urol 1980, 52: 50–6.

    Article  PubMed  CAS  Google Scholar 

  56. Mancini A, Milardi D, Conte G, et al. Coenzyme Q10: another biochemical alteration linked to infertility in varicocele patients?. Metabolism 2003, 52: 402–6.

    Article  PubMed  CAS  Google Scholar 

  57. Angelitti AG, Colacicco L, Callà C, Arizzi M, Lippa S. Coenzyme Q: potentially useful index of bioenergetic and oxidative status of spermatozoa. Clin Chem 1995, 41: 217–9.

    PubMed  CAS  Google Scholar 

  58. Mancini A, Conte G, De Marinis L, et al. Coenzyme Q10 levels in human seminal fluid: diagnostic and clinical implications. Mol Aspects Med 1994, 15(Suppl): s249–55.

    Article  PubMed  Google Scholar 

  59. Littarru G, Lippa S, Oradei A, Fiorini R, Mazzanti L Metabolic and diagnostic implications of human blood CoQ10 levels. In: Folkers K, Littarru GP, Yamagami T (eds). Biomedical and clinical aspects of Coenzyme Q. Amsterdam: Elsevier 1991, 167–78.

    Google Scholar 

  60. Mancini A, Conte G, Milardi D, De Marinis L, Littarru G. Relationship between sperm cell ubiquinone and seminal parameters in subjects with and without varicocele. Andrologia 1998, 30: 1–4.

    Article  PubMed  CAS  Google Scholar 

  61. Mancini A, Milardi D, Conte G, Festa R, De Marinis L, Littarru G. Seminal antioxidants in humans: preoperative and postoperative evaluation of Coenzyme Q10 in varicocele patients. Horm Metab Res 2005, 37: 428–32.

    Article  PubMed  CAS  Google Scholar 

  62. Meucci E, Milardi D, Mordente A, et al. Total antioxidant capacity in patients with varicocele. Fertil Steril 2003, 79(Suppl 3): 1577–83.

    Article  PubMed  Google Scholar 

  63. Mancini A, Milardi D, Festa R, et al. Seminal CoQ10 and male infertility: effects of medical or surgical treatment on endogenous seminal plasma concentrations. Abstracts of the 4th International Coenzyme Q10 association, Los Angeles 2005, 64-5.

  64. Alleva R, Scaramucci A, Mantero F, Bompadre S, Leoni L, Littarru G. The protective role of ubiquinol-10 against formation of lipid hydroperoxides in human seminal fluid. Mol Aspects Med (Suppl 1) 1997, 18: 221–8.

    Article  Google Scholar 

  65. Mohr D, Bowry VW, Stocker R. Dietary supplementation with coenzyme Q10 results in increased levels of ubiquinol-10 within circulating lipoproteins and increased resistance of human low-density lipoprotein to the initiation of lipid peroxidation. Biochim Biophys Acta 1992, 1126: 247–54.

    Article  PubMed  CAS  Google Scholar 

  66. Balercia G, Arnaldi G, Fazioli F, et al. Coenzyme Q10 levels in idiopathic and varicocele-associated asthenozoospermia. Andrologia 2002, 34: 107–11.

    Article  PubMed  CAS  Google Scholar 

  67. Littarru G, Tiano L. Clinical aspects of Coenzyme Q10: an update. Curr Opin Clin Nutr Metab Care 2005, 8: 641–6.

    Article  PubMed  CAS  Google Scholar 

  68. Mazzilli F, Cerasaro M, Bisanti A, Rossi T, Dondero F. Seminal parameters and the swelling test in patients with sperm before and after treatment with ubiquinone (CoQ10). 2nd International Symposium on Reproductive Medicine, Fiuggi. Rome: Acta Medica, Edizioni e Congressi 1988, 71.

    Google Scholar 

  69. Mazzilli F, Bisanti A, Rossi T, DeSantis L, Dondero F. Seminal and biological parameters in dysspermic patients with sperm hypomotility before and after treatment with ubiquinone (CoQ10). J Endocrinol Invest 1990, 13 S1, 88.

    Article  Google Scholar 

  70. Lewin A, Lavon H. The effect of Coenzyme Q10 on sperm motility and function. Molec Aspects Med 1997, 18(Suppl): S213–9.

    Article  CAS  Google Scholar 

  71. Balercia G, Mantero F, Armeni T, Principato G, Regoli F. Total oxyradical scavenging capacity toward different reactive species in seminal plasma and sperm cells. Clin Chem Lab Med 2003, 41: 13–9.

    Article  PubMed  CAS  Google Scholar 

  72. Balercia G, Mosca F, Mantero F, et al. Coenzyme Q(10) supplementation in infertile men with idiopathic asthenozoospermia: an open, uncontrolled pilot study. Fertil Steril 2004, 81: 93–8.

    Article  PubMed  CAS  Google Scholar 

  73. Balercia G, Moretti S, Vignini A, et al. Role of nitric oxide concentrations on human sperm motility. J Androl 2004, 25: 245–9.

    PubMed  CAS  Google Scholar 

  74. Frei B, Yamamoto Y, Niclas D, Ames BN. Evaluation of an isoluminol chemiluminescence assay for detection of hydroperoxides in human blood plasma. Annal Biochem 1998, 175: 120–30.

    Article  Google Scholar 

  75. Langsjoen P, Langsjoen A, Willis R, Folkers K. Treatment of hypertrophic cardiomyopathy with coenzyme Q10. Mol Aspects Med 1997, 8(Suppl): S145–51.

    Article  Google Scholar 

  76. Balercia G, Buldreghini E, Vignini A, et al. Coenzyme Q10 treatment in infertile male with idiopathic asthenozoospermia. A placebo-controlled, double blind randomized trial. Fertil Steril 2009, 91: 1785–92.

    Article  PubMed  CAS  Google Scholar 

  77. Fato R, Cavazzoni M, Castelluccio C, Parenti Castelli G, Lenaz G. Steady-state kinetics of ubiquinol-cytochrome c reductase in bovine heart submitochondrial particles: diffusional effects. Biochem J 1993, 290: 225–36.

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Kelso KA, Redpath A, Noble RC, Speake BK. Lipid and antioxidant changes in spermatozoa and seminal plasma throughout the reproductive period of bulls. J Reprod Fertil 1997, 109: 1–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Balercia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balercia, G., Mancini, A., Paggi, F. et al. Coenzyme Q10 and male infertility. J Endocrinol Invest 32, 626–632 (2009). https://doi.org/10.1007/BF03346521

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03346521

Key-words

Navigation