Journal of Endocrinological Investigation

, Volume 32, Issue 1, pp 63–68 | Cite as

Relationship between cerebral arterial pulsatility and carotid intima media thickness in diabetic and non-diabetic patients with non-alcoholic fatty liver disease

  • F. Karakurt
  • A. Carlioglu
  • A. Koktener
  • M. Ozbek
  • A. Kaya
  • M. E. Uyar
  • B. Kasapoglu
  • A. Ilhan
Original Articles


Non-alcoholic fatty liver disease (NAFLD) is considered a risk factor for atherosclerosis. The aim of the present study was to investigate the association of the pulsatility index (PI) of basilar artery (BA) and carotid intima media thickness (IMT) in diabetic and non-diabetic NAFLD patients. We compared a group of 80 stroke-free, diabetic and non-diabetic NAFLD patients and a control group of 26 healthy subjects without NAFLD. We then evaluated the PI of the BA by transcranial Doppler ultrasonography, and carotid IMT. The PI was significantly higher in diabetic NAFLD patients than in controls (p<0.003). Carotid IMT and asymmetrical dimethylarginine (ADMA) levels were higher in NAFLD patients than controls respectively (p<0.003, p<0.04). The PI of the BA was significantly correlated with age (R=0.369, p<0.001), male gender (R=0.207, p=0.035). diabetes (R=0.332, p=0.001), carotid IMT (R=0.296, p=0.002) and ADMA (R=0.349, p=0.015). A multiple regression analysis was performed with PI as the dependent variable with known clinical risk factors. Age (β=3.54, p<0.001), diabetes (β=2.32, p=0.022), gender (β=2.20, p<0.03), ADMA (β=2.25, p<0.031), and carotid IMT (β=2.41, p<0.017), were independent predictive factors of BA PI. Adjustment for age and gender did not alter these relative risks, exhibiting a significant independent contribution to PI. The increased PI observed in this study represents enhanced cerebrovascular resistance, and we observed that the age, male gender, diabetes, ADMA levels, and carotid IMT were independent predictive factors of BA PI.


Asymmetrical dimethylarginine carotid intima media thickness non-alcoholic fatty liver disease Type 2 diabetes mellitus transcranial Doppler 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harrison SA, Neuschwander-Tetri BA. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Clin Liver Dis 2004, 8: 861–79.PubMedCrossRefGoogle Scholar
  2. 2.
    McCullough AJ. The clinical features, diagnosis and natural history of nonalcoholic fatty liver disease. Clin Liver Dis 2004, 8: 521–33.PubMedCrossRefGoogle Scholar
  3. 3.
    Zsuga J, Gesztelyi R, Török J, Keki S, Bereczki D. Asymmetric dimethylarginine: a molecule responsible for the coexistence of insulin resistance and atherosclerosis via dual nitric oxide synthase inhibition. Medical Hypotheses 2005, 65: 1091–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Perticone F, Sciacqua A, Maio R, et al. Asymmetric dimethylarginine, L-arginine, and endothelial dysfunction in essential hypertension. J Am Coll Cardiol 2005, 46: 518–23.PubMedCrossRefGoogle Scholar
  5. 5.
    Kawamori R, Yamasaki Y, Matsushima H, et al. Prevalence of carotid atherosclerosis in diabetic patients: ultrasound high-resolution B-mode imaging on carotid arteries. Diabetes Care 1992, 15: 1290–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Temelkova-Kurktschiev TS, Koehler C, Leonhardt W, et al. Increased intimal-medial thickness in newly detected type 2 diabetes: risk factors. Diabetes Care 1999, 22: 333–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Mercuri M, Bond MG, Nichos FT, et al. Baseline reproducibility of B-mode ultrasound imaging measurements of carotid intimal media thickness. J Cardiovasc Diag Procedures 1993, 11: 241–52.Google Scholar
  8. 8.
    Wakisaka M, Nagamachi S, Inoue K, Morotomi Y, Nunoi K, Fujishima M. Reduced regional cerebral blood flow in aged non-insulin-dependent diabetic patients with no history of cerebrovascular disease: evaluation by N-isopropyl-123I-p-iodoamphetamine with single photon emission computed tomography. J Diabet Complications 1990, 4: 170–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Jimenez-Bonilla JF, Carril JM, Quirce R, Gomez-Barquin R, Amado JA, Gutierrez-Mendiguchia C. Assessment of cerebral blood flow in diabetic patients with no clinical history of neurological disease. Nucl Med Commun 1996, 17: 790–4.PubMedCrossRefGoogle Scholar
  10. 10.
    Grill V, Gutniak M, Bjorkman O, et al. Cerebral blood flow and substrates utilization in insulin-treated diabetic subjects. Am J Physiol 1990, 258: E813–20.PubMedGoogle Scholar
  11. 11.
    Lippera S, Gregorio F, Ceravolo MG, Lagalla G, Provinciali L. Diabetic retinopathy and cerebral hemodynamic impairment in type II diabetes. Eur J Ophthalmol 1997, 7: 156–62.PubMedGoogle Scholar
  12. 12.
    Fulesdi B, Limburg M, Bereczki D, et al. Impairment of cerebrovascular reactivity in long-term type 1 diabetes. Diabetes 1997, 46: 1840–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Yasaka M, Yamaguchi T, Shichiri M. Distribution of atherosclerosis and risk factors in atherothrombotic occlusion. Stroke 1993, 24: 206–11.PubMedCrossRefGoogle Scholar
  14. 14.
    Day CP. Non-alcoholic fatty liver disease: current concepts and management strategies. Clin Med 2006, 6: 19–25.PubMedCrossRefGoogle Scholar
  15. 15.
    McCullough AJ. Pathophysiology of non-alcoholic steatohepatitis. J Clin Gastroenterol 2006, 40(Suppl. 1): 17–29.Google Scholar
  16. 16.
    Saadeh S, Younossi ZM, Remer EM, et al. The utility of radiological imaging in nonalcoholic fatty liver disease. Gastroenterology 2002, 123: 745–50.PubMedCrossRefGoogle Scholar
  17. 17.
    Fujioka KA, Douville CM. Anatomy and free hand examination techniques. In: Newell DW, Aaslid R, eds. Transcranial Doppler. New York, NY: Raven Press Publishers. 1992, 9–31.Google Scholar
  18. 18.
    Katz ML, Whisler GD. Examination using transcranial Doppler mapping. In: Newell DW, Aaslid R, eds. Transcranial Doppler. New York, NY: Raven Press Publishers. 1992, 33–9.Google Scholar
  19. 19.
    Gosling RG, King DH. Arterial assessment by Doppler-shift ultrasound. Proc R Soc Med 1974, 67: 447–9.PubMedCentralPubMedGoogle Scholar
  20. 20.
    Lindegaard K-F. Indices of pulsatility. In: Newell DW, Aaslid R, eds. Transcranial Doppler. New York, NY: Raven Press Publishers, 1992, 67–82.Google Scholar
  21. 21.
    Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28: 412–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee KY, Sohn YH, Baik JS, Kim GW, Kim JS. Arterial pulsatility as an index of cerebral microangiopathy in diabetes. Stroke 2000, 31: 1111–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Kidwell CS, El-Saden S, Livshits Z, Martin NA, Glenn TC, Saver JL. Transcranial Doppler pulsatility indices as a measure of diffuse small-vessel disease. J Neuroimaging 2001, 11: 229–35.PubMedCrossRefGoogle Scholar
  24. 24.
    Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 2004, 62: 45–51.PubMedCrossRefGoogle Scholar
  25. 25.
    Shen J, Xue Y, Zhang Y, Wang Q. The application of transcranial Doppler in detecting diabetic cerebral macroangiopathy and microangiopathy. Zhonghua Nei Ke Za Zhi 2002, 41: 172–4.PubMedGoogle Scholar
  26. 26.
    Dikanovic M, Hozo I, Kokic S, et al. Transcranial Doppler ultrasound assessment of intracranial hemodynamics in patients with type 2 diabetic mellitus. Ann Saudi Med 2005, 25: 486–8.PubMedGoogle Scholar
  27. 27.
    Lippera S, Gregorio F, Ceravolo MG, Lagalla G, Provinciali L. Diabetic retinopathy and cerebral hemodynamic impairment in type 2 diabetes, Eur J Ophthalmol 1997, 7: 156–62.PubMedGoogle Scholar
  28. 28.
    Fülesdi B, Limburg M, Oláh L, Bereczki D, Csiba L, Kollár J. Lack of gender difference in acetazolamide induced cerebral vasomotor reactivity in patients suffering from type 1 diabetes mellitus. Acta Diabetol 2001, 38: 107–12.PubMedCrossRefGoogle Scholar
  29. 29.
    Fulesdi B, Limburg M, Bereczki D, et al. Cerebrovascular reactivity and reserve capacity in type II diabetes mellitus. J Diabetes Complications 1999, 13: 191–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Kadoi Y, Hinohara H, Kunimoto F, et al. Diabetic patients have an impaired cerebral vasodilatory response to hypercapnia under propofol anesthesia. Stroke 2003, 34: 2399–403.PubMedCrossRefGoogle Scholar
  31. 31.
    Idris I, Thomson GA, Sharma JC. Diabetes mellitus and stroke. Int J Clin Pract 2006, 60: 48–56.PubMedCrossRefGoogle Scholar
  32. 32.
    Tkác I, Troscák M, Javorský M, Petrík R, Tomcová M. Increased intracranial arterial resistance in patients with type 2 diabetes mellitus. Wien Klin Wochenschr 2001, 113: 870–3.PubMedGoogle Scholar
  33. 33.
    Cho SJ, Sohn YH, Kim GW, Kim JS. Blood flow velocity changes in the middle cerebral artery as an index of the chronicity of hypertension. J Neurol Sci 1997, 150: 77–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Grolimund P, Seiler RW. Age dependence of the flow velocity in the basal cerebral arteries — a transcranial Doppler ultrasound study. Ultrasound Med Biol 1988, 14: 191–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Albert MA, Danielson E, Rifai N, and Ridker PM. Effect of statin therapy on C-reactive protein levels: the Pravastatin Inflammation/CRP Evaluation (PRINCE): a randomized trial and cohort study. JAMA 2001, 286: 64–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Fukuhara T, Hida K. Pulsatility index at the cervical internal carotid artery as a parameter of microangiopathy in patients with type 2 diabetes. J Ultrasound Med 2006, 25: 599–605.PubMedGoogle Scholar
  37. 37.
    O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr. Carotid artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular health study collaborative research group. N Engl J Med 1999, 340: 14–22.Google Scholar
  38. 38.
    Langenfeld MR, Forst T, Hohberg C, et al. Pioglitazone decrease carotid intima-media thickness independently of glycemic control in patients with type 2 diabetes mellitus. results from a controlled randomized study. Circulation 2005, 111: 2525–31.Google Scholar
  39. 39.
    Brea A, Mosquera D, Martin E, Arizti A, Cordero JL, Ros E. Nonalcoholic fatty liver disease is associated with carotid atherosclerosis. A case-control study. Arterioscler Thromb Vasc Biol 2005, 25: 1045–50.CrossRefGoogle Scholar
  40. 40.
    Villanova N, Moscatiello S, Ramilli S, et al. Endothelial dysfunction and cardiovascular risk profile in nonalcoholic fatty liver disease. Hepatology 2005, 42: 473–80.PubMedCrossRefGoogle Scholar
  41. 41.
    Zoccali C, Bode-Böger S, Mallamaci F, et al. Plasma concentration of asymmetrical dimethylarginine and mortality in patients with end-stage renal disease: a prospective study. Lancet 2001, 358: 2113–7.PubMedCrossRefGoogle Scholar
  42. 42.
    Valkonen VP, Pälvä H, Salonen JT, et al. Risk of acute coronary events and serum concentration of asymmetrical dimethylarginine. Lancet 2001, 358: 2127–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Böger RH, Bode-Böger SM, Kienke S, Stan AC, Nafe R, Frölich JC. Dietary L-arginine decreases myointimal cell proliferation and vascular monocyte accumulation in cholesterol-fed rabbits. Atherosclerosis 1998, 136: 67–77.PubMedCrossRefGoogle Scholar
  44. 44.
    Pelligrino DA, Albrecht RF. Chronic hyperglycemic diabetes in the rat is associated with a select impairment of cerebral vasodilatory responses. J Cereb Blood Flow Metab 1991, 11: 667–77.PubMedCrossRefGoogle Scholar
  45. 45.
    Mayhan WG. Responses of cerebral arterioles to activation of β-adrenergic receptors during diabetes mellitus. Stroke 1994, 25: 141–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Lee KO, Lee KY, Lee SY, Ahn CW, Park JS. Lacunar Infarction in type 2 diabetes is associated with an elevated intracranial arterial pulsatility Index. Yonsei Med J 2007, 48: 802–6.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Park JS, Cho MH, Lee KY, et al. Cerebral arterial pulsatility and insulin resistance in type 2 diabetic patients. Diabetes Res Clin Pract 2008, 79: 237–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Kwon JH, Kim JS, Kang DW, Bae KS, Kwon SU. The thickness and texture of temporal bone in brain CT predict acoustic window failure of transcranial Doppler. J Neuroimaging 2006, 16: 347–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Itoh T, Matsumoto M, Handa N, et al. Rate of successful recording of blood flow signals in the middle cerebral artery using transcranial Doppler sonography. Stroke 1993, 24: 1192–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Halsey JH. Effect of emitted power on waveform intensity in transcranial Doppler. Stroke 1990, 21: 1573–8.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2009

Authors and Affiliations

  • F. Karakurt
    • 1
  • A. Carlioglu
    • 1
  • A. Koktener
    • 2
  • M. Ozbek
    • 3
  • A. Kaya
    • 1
  • M. E. Uyar
    • 1
  • B. Kasapoglu
    • 1
  • A. Ilhan
    • 4
  1. 1.Division of Endocrinology, Department of Internal Medicine, Dıskapı Ankara Education and Research HospitalFatih University, Faculty of MedicineAnkaraTurkey
  2. 2.Department of RadiologyFatih University, Faculty of MedicineTurkey
  3. 3.Department of Internal MedicineFatih University, Faculty of MedicineTurkey
  4. 4.Department of NeurologyFatih University, Faculty of MedicineAnkaraTurkey

Personalised recommendations