Skip to main content
Log in

Correlation between adiponectin polymorphisms and non-alcoholic fatty liver disease with or without metabolic syndrome in Chinese population

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background: To investigate the effect of single nucleotide polymorphisms (SNP) 45 and 276 of the adiponectin gene on non-alcoholic fatty liver disease (NAFLD) with or without metabolic syndrome. Methods: A total of 165 NAFLD, 83 NAFLD with metabolic syndrome and 160 healthy controls from Chinese population were genotyped for the adiponectin gene (+45T>G and +276G>T) by PCR-restriction fragment length polymorphism methods. Plasma adiponectin and insulin levels were determined by enzyme-linked immunosorbent assay and radioimmunoassay, respectively. Insulin resistance (IR) was evaluated by using homeostasis model assessment of IR (HOMA-IR). Results: NAFLD with metabolic syndrome had further extent of IR and hypoadiponectinemia. No association of SNP45 or SNP276 was found in NAFLD or NAFLD with metabolic syndrome. Subjects carrying the G allele of SNP45 showed higher levels of triglyceride (TG), fasting blood sugar (FBS), HOMA, body mass index (BMI), and alanine transaminase (ALT), as well as lower plasma adiponectin levels. In the normal-weight group of SNP276, subjects carrying the G allele showed higher HOMA and subjects carrying the T allele showed lower BMI. Conclusions: Our study observed further hypoadiponectinemia and IR in NAFLD with metabolic syndrome. The T45G and G276T of the adiponectin gene may not be the important determinants of NAFLD in Chinese people, but some of them still influence serum ALT, BMI, IR, lipid, glucose metabolism and plasma adiponectin concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Haluzík M, Parízková J, Haluzík MM. Adiponectin and its role in the obesity-induced insulin resistance and related complications. Physiol Res 2004, 53: 123–9.

    PubMed  Google Scholar 

  2. Valenti L, Fracanzani AL, Dongiovanni P, et al. Tumor necrosis factor alpha promoter polymorphisms and insulin resistance in nonalcoholic fatty liver disease. Gastroenterology 2002, 122: 274–80.

    Article  PubMed  CAS  Google Scholar 

  3. Crespo J, Cayon, Fernandez-Gil P, et al. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 2001, 34: 1158–63.

    Article  PubMed  CAS  Google Scholar 

  4. Iwamoto N, Ogawa Y, Kajihara S, et al. Gln27Glu beta2-adrenergic receptor variant is associated with hypertriglyceridemia and the development of fatty liver. Clin Chim Acta 2001, 314: 85–91.

    Article  PubMed  CAS  Google Scholar 

  5. Staiger H, Tschritter O, Machann J, Thamer C, et al. Relationship of serum adiponectin and leptin concentrations with body fat distribution in humans. Obes Res 2003, 11: 368–72.

    Article  PubMed  CAS  Google Scholar 

  6. Weyer C, Funahashi T, Tanaka S, et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001, 86: 1930–5.

    Article  PubMed  CAS  Google Scholar 

  7. Matsubara M, Maruoka S, Katayose S. Decreased plasma adiponectin concentrations in women with dyslipidemia. J Clin Endocrinol Metab 2002, 87: 2764–9.

    Article  PubMed  CAS  Google Scholar 

  8. Kishida K, Nagaretani H, Kondo H, et al. Disturbed secretion of mutant adiponectin associated with the metabolic syndrome. Biochem Biophys Res Commun 2003, 306: 286–92.

    Article  PubMed  CAS  Google Scholar 

  9. Kumada M, Kihara S, Sumitsuji S, et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol 2003, 23: 85–9.

    Article  PubMed  CAS  Google Scholar 

  10. Lonardo A, Bellini M, Tartoni P, Tondelli E. The bright liver syndrome. Prevalence and determinants of a ‘bright’ liver echopattern. Ital J Gastroenterol Hepatol 1997, 29: 351–6.

    PubMed  CAS  Google Scholar 

  11. Joseph AE, Saverymuttu SH, al-Sam S, Cook MG, Maxwell JD. Comparison of liver histology with ultrasonography in assessing diffuse parenchymal liver disease. Clin Radiol 1991, 43: 26–31.

    Article  PubMed  CAS  Google Scholar 

  12. Fatty Liver and Alcoholic Liver Disease Study Group of Chinese Liver Disease Association. Diagnostic criteria of nonalcoholic fatty liver disease. Zhonghua Gan Zang Bing Za Zhi 2003, 11: 71.

    Google Scholar 

  13. 13. Fatty Liver and Alcoholic Liver Disease Study Group, Chinese Liver Disease Association. Diagnostic criteria of alcoholic liver disease. Zhonghua Gan Zang Bing Za Zhi 2003, 11: 72.

    Google Scholar 

  14. Jinfeng T, Ying W, Qidi W, et al. Relationship between adiponectin concentration and adiposity. Chin J Endocrinol Metab 2003, 19: 166–8.

    Google Scholar 

  15. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28: 412–9.

    Article  PubMed  CAS  Google Scholar 

  16. Lewontin RC. The interaction of selection and linkage 1. General considerations: heterotic models. Genetics 1964, 49: 49–67.

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: A feature of the metabolic syndrome. Diabetes 2001, 50: 1844–50.

    Article  PubMed  CAS  Google Scholar 

  18. Schind helm RK, Diamant M, Dekker JM, et al. Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease. Diabetes Metab Res Rev 2006, 22: 437–43.

    Article  CAS  Google Scholar 

  19. Haffner SM. Relationship of metabolic risk factors and development of cardiovascular disease and diabetes. Obesity (Silver Spring) 2006, 14 (Suppl 3): 121S–7S.

    Article  Google Scholar 

  20. Schindhelm RK, Dekker JM, Nijpels G, et al. Alanine aminotransferase predicts coronary heart disease events: a 10-year follow-up of the Hoorn Study. Atherosclerosis 2007, 191: 391–6.

    Article  PubMed  CAS  Google Scholar 

  21. Ryo M, Nakamura T, Kihara S, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J 2004, 68: 975–81.

    Article  PubMed  CAS  Google Scholar 

  22. Stumvoll M, Tschritter O, Fritsche A, et al. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: interaction with family history of type 2 diabetes. Diabetes 2002, 51:37–41.

    Article  PubMed  CAS  Google Scholar 

  23. Katsuda Y, Asano A, Murase Y, et al. Association of genetic variation of the adiponectin gene with body fat distribution and carotid atherosclerosis in Japanese obese subjects. J Atheroscler Thromb 2007, 14: 19–26.

    Article  PubMed  CAS  Google Scholar 

  24. Hara K, Boutin P, Mori Y, et al. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Janpanese population. Diabetes 2002, 51: 536–40.

    Article  PubMed  CAS  Google Scholar 

  25. Yang WS, Tsou PL, Lee WJ, et al. Allele-specific differential expression of a common adiponectin gene polymorphism related to obesity. J Mol Med 2003, 81: 428–34.

    Article  PubMed  CAS  Google Scholar 

  26. Ukkola O, Ravussin E, Jacobson P, et al. Mutations in the adiponectin gene in lean and obese subjects from the Swedish obese subjects cohort. Metabolism 2003, 52: 881–4.

    Article  PubMed  CAS  Google Scholar 

  27. Menzaghi C, Ercolino T, Di Paola R, et al. A haplotype in the adiponectin locus is associated with obesity and other features of the insulin resistance syndrome. Diabetes 2002, 51: 2306–12.

    Article  PubMed  CAS  Google Scholar 

  28. Vasseur F, Helbecque N, Dina C, et al. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. Hum Mol Genet 2002, 11: 2607–14.

    Article  PubMed  CAS  Google Scholar 

  29. Nakatani K, Noma K, Nishioka J, et al. Adiponectin gene variation associates with the increasing risk of type 2 diabetes in non-diabetic Japanese subjects. Int J Mol Med 2005, 15: 173–7.

    PubMed  CAS  Google Scholar 

  30. Jang Y, Lee JH, Chae JS, et al. Association of the 276G->T polymorphism of the adiponectin gene with cardiovascular disease risk factors in nondiabetic Koreans. Am J Clin Nutr 2005, 82: 760–7.

    PubMed  CAS  Google Scholar 

  31. Jang Y, Lee JH, Kim OY, et al. The SNP276G>T polymorphism in the adiponectin (ACDC) gene is more strongly associated with insulin resistance and cardiovascular disease risk than SNP45T>G in nonobese/nondiabetic Korean men independent of abdominal adiposity and circulating plasma adiponectin. Metabolism 2006, 55: 59–66.

    Article  PubMed  CAS  Google Scholar 

  32. Filippi E, Sentinelli F, Trischitta V, et al. Association of the human adiponectin gene and insulin resistance. Eur J Hum Genet 2004, 12: 199–205.

    Article  PubMed  CAS  Google Scholar 

  33. Takahashi M, Arita Y, Yamagata K, et al. Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes Relat Metab Disord 2000, 24: 861–8.

    Article  PubMed  CAS  Google Scholar 

  34. Menzaghi C, Ercolino T, Salvemini L, et al. Multigenic control of serum adiponectin levels: evidence for a role of the APM1 gene and a locus on 14q13. Physiol Genomics 2004, 19: 170–4.

    Article  PubMed  CAS  Google Scholar 

  35. Fredriksson J, Carlsson E, Orho-Melander M, Groop L, Ridderstråle M. Polymorphism in the adiponectin gene influences adiponectin expression levels in visceral fat in obese subjects. Int J Obes (Lond) 2006, 30: 226–32.

    Article  CAS  Google Scholar 

  36. Mousavinasab F, Tahtinen T, Jokelainen J, et al. Effect of the Pro12Ala polymorphism of the PPARg2 gene on serum adiponectin changes. Endocrine 2005, 27: 307–9.

    Article  PubMed  CAS  Google Scholar 

  37. Gonzalez-Sanchez JL, Martínez-Calatrava MJ, Martínez-Larrad MT, et al. Interaction of the -308G/A Promoter Polymorphism of the Tumor Necrosis factor-alpha gene with single-nucleotide polymorphism 45 of the adiponectin gene: effect on serum adiponectin concentrations in a Spanish population. Clin Chem 2006, 52: 97–103.

    Article  PubMed  CAS  Google Scholar 

  38. Lonardo A, Bellini M, Tartoni P, Tondelli E. The bright liver syndrome. Prevalence and determinants of a ‘bright’ liver echopattern. Ital J Gastroenterol Hepatol 1997, 29: 351–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. L. Wang MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z.L., Xia, B., Shrestha, U. et al. Correlation between adiponectin polymorphisms and non-alcoholic fatty liver disease with or without metabolic syndrome in Chinese population. J Endocrinol Invest 31, 1086–1091 (2008). https://doi.org/10.1007/BF03345657

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345657

Keywords

Navigation