Skip to main content
Log in

Tamoxifen inhibits transforming growth factor-α gene expression in human breast carcinoma samples treated with triiodothyronine

  • Original Articles
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Objectives: To examine the effects of triiodothyronine (T3), 17β-estradiol (E2), and tamoxifen (TAM) on transforming growth factor (TGF)-α gene expression in primary breast cancer cell cultures and interactions between the different treatments. Methods and results: Patients included in the study (no.=12) had been newly diagnosed with breast cancer. Fresh human breast carcinoma tissue was cut into 0.3-mm slices. These slices were placed in six 35-mm dishes on 2-ml organ culture medium. Dishes received the following treatments: dish 1: ethanol; dish 2: T3; dish 3: T3+TAM; dish 4: TAM; dish 5: E2; dish 6: E2+TAM. TGF-α mRNA content was normalized to glyceraldehyde-3-phosphate dehydrogenase mRNA levels. All tissues included in this study were positive for estrogen receptor (ER) and thyroid hormone receptor expression. Treatment with T3 for 48 h significantly increased TGF-α mRNA levels compared to controls (15-fold), and concomitant treatment with TAM reduced expression to 3.4-fold compared to controls. When only TAM was added to the culture medium, TGF-α mRNA expression increased 5.3-fold, significantly higher than with all other treatment modalities. Conclusion: We demonstrate that TGF-α mRNA expression is more efficiently upregulated by T3 than E2. Concomitant treatment with TAM had a mitigating effect on the T3 effect, while E2 induced TGF-α upregulation. Our findings show some similarities between primary culture and breast cancer cell lines, but also some important differences: a) induction of TGF-α, a mitogenic protein, by TAM; b) a differential effect of TAM that may depend on relative expression of ER α and β; and c) supraphysiological doses of T3 may induce mitogenic signals in breast cancer tissue under conditions of low circulating E2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larsen PR, Harney JW, Moore DD. Sequences required for cell-type specific thyroid hormone regulation of rat growth hormone promoter activity. J Biol Chem1986, 261: 14373–6.

    PubMed  CAS  Google Scholar 

  2. Catanzaro DF, West BL, Baxter JD, Reudelhuber TL. A pituitary-specific factor interacts with an upstream promotor element in the rat growth hormone gene. Mol Endocrinol 1987, 1: 90–6.

    Article  PubMed  CAS  Google Scholar 

  3. Ye ZS, Samuels HH. Cell- and sequence-specific binding of nuclear proteins to 5′-flanking DNA of the rat growth hormone gene. J Biol Chem 1987, 262: 6313–7.

    PubMed  CAS  Google Scholar 

  4. Gustafson TA, Markham BE, Bahl JJ, Morkin E. Thyroid hormone regulates expression of a transfected alpha-myosin heavy-chain fusion gene in fetal heart cells. Proc Natl Acad Sci USA, 1987, 84: 3122–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Vasudevan N, Ogawa S, Pfaff D. Estrogen and thyroid hormone receptor interactions: physiological flexibility by molecular specificity. Physiol Rev 2002, 82: 923–44.

    PubMed  CAS  Google Scholar 

  6. Fujimoto N, Jinno N, Kitamura S. Activation of estrogen response element dependent transcription by thyroid hormone with increase in estrogen receptor levels in a rat pituitary cell line, GH3. J Endocrinol 2004, 181: 71–83.

    Article  Google Scholar 

  7. Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 1998, 351: 1451–67.

    Article  Google Scholar 

  8. El-Ashry D, Chrysogelos SA, Lippman ME, Kern FG. Estrogen induction of TGF-alpha is mediated by an estrogen response element composed of two imperfect palindromes. J Steroid Biochem Mol Biol 1996, 59: 261–9.

    Article  PubMed  CAS  Google Scholar 

  9. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 1998, 90: 1371–88.

    Article  PubMed  CAS  Google Scholar 

  10. Jordan VC. Antiestrogenic action of raloxifene and tamoxifen: today and tomorrow. J Natl Cancer Inst 1998, 90: 967–71.

    Article  PubMed  CAS  Google Scholar 

  11. Nogueira CR, Brentani MM. Triiodothyronine mimics the effects of estrogen in breast cancer cell lines. J Steroid Biochem Mol Biol 1996, 59: 271–9.

    Article  PubMed  CAS  Google Scholar 

  12. Levenson AS, Tonetti DA, Jordan VC. The oestrogen-like effect of 4-hydroxytamoxifen on induction of transforming growth factor alpha mRNA in MDA-MB-231 breast cancer cells stably expressing the oestrogen receptor. Br J Cancer 1998, 77: 1812–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Topper RJ, Oka T, Vonderhaar BK. Techniques for studying development of normal mammary epithelial cells in organ culture. Methods Enzymol 1975, 39: 443–54.

    Article  PubMed  CAS  Google Scholar 

  14. Mira-y-Lopez R, Ossowski L. Preservation of steroid hormone receptors in organ cultures of human breast carcinomas. Cancer Res 1990, 50: 78–83.

    PubMed  CAS  Google Scholar 

  15. Speirs V, Skliris GP, Burdall SE, Carder PJ. Distinct expression patterns of ER alpha and ER beta in normal human mammary gland. J Clin Pathol 2002, 55: 371–4.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Jiang SY, Jordan VC. Growth regulation of estrogen receptor-negative breast cancer cells transfected with complementary DNAs for estrogen receptor. J Natl Cancer Inst 1992, 84: 580–91.

    Article  PubMed  CAS  Google Scholar 

  17. Heuson JC, Pasteels JL, Legros N, Heuson-Stiennon J, Leclercq G. Estradiol-dependent collagenolytic enzyme activity in long-term organ culture of human breast cancer. Cancer Res 1975, 35: 2039–48.

    PubMed  CAS  Google Scholar 

  18. Jing Y, Xu XC, Lotan R, Waxman S, Mira-y-Lopez R. Human breast carcinoma slice cultures retain retinoic acid sensitivity. Braz J Med Biol Res 1996, 29: 1105–8.

    PubMed  CAS  Google Scholar 

  19. van der Kuip H, Mürdter TE, Sonnenberg M, et al. Short term culture of breast cancer tissues to study the activity of the anticancer drug taxol in an intact tumor environment. BMC Cancer 2006, 6: 86.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Voigt P, Ma YJ, Gonzalez D, et al. Neural and glial-mediated effects of growth factors acting via tyrosine kinase receptors on luteinizing hormone-releasing hormone neurons. Endocrinology 1996, 137: 2593–605.

    PubMed  CAS  Google Scholar 

  21. Bates SE, Davidson NE, Valverius EM, et al. Expression of transforming growth factor alpha and its messenger ribonucleic acid in human breast cancer: its regulation by estrogen and its possible functional significance. Mol Endocrinol 1988, 2: 543–55.

    Article  PubMed  CAS  Google Scholar 

  22. Saeki T, Cristiano A, Lynch MJ, et al. Regulation by estrogen through the 5′-flanking region of the transforming growth factor alpha gene. Mol Endocrinol 1991, 5: 1955–63.

    Article  PubMed  CAS  Google Scholar 

  23. Bjorge JD, Kudlow JE. Epidermal growth factor receptor synthesis is stimulated by phorbol ester and epidermal growth factor. Evidence fora common mechanism. J Biol Chem 1987, 262: 6615–22.

    PubMed  CAS  Google Scholar 

  24. Mueller SG, Kobrin MS, Paterson AJ, Kudlow JE. Transforming growth factor-alpha expression in the anterior pituitary gland: regulation by epidermal growth factor and phorbol ester in dispersed cells. Mol Endocrinol 1989, 3: 976–83.

    Article  PubMed  CAS  Google Scholar 

  25. Coffey RJ Jr, Derynck R, Wilcox JN, et al. Production and auto-induction of transforming growth factor-alpha in human keratinocytes. Nature 1987, 328: 817–20.

    Article  PubMed  CAS  Google Scholar 

  26. Bjorge JD, Paterson AJ, Kudlow JE. Phorbol ester or epidermal growth factor (EGF) stimulates the concurrent accumulation of mRNA for the EGF receptor and its ligand transforming growth factor-alpha in a breast cancer cell line. J Biol Chem 1989, 264: 4021–7.

    PubMed  CAS  Google Scholar 

  27. Zhou-Li F, Albaladejo V, Joly-Pharaboz MO, Nicolas B, Andre J. Antiestrogens prevent the stimulatory effects of L-triiodothyronine on cell proliferation. Endocrinology 1992, 130: 1145–52.

    PubMed  CAS  Google Scholar 

  28. Koga M, Nakao H, Sato B. Effects of retinoic acid on estrogen- and thyroid hormone-induced growth in a newly established rat pituitary tumor cell line. J Steroid Biochem Mol Biol 1992, 43: 263–70.

    Article  PubMed  CAS  Google Scholar 

  29. DiPippo VA, Lindsay R, Powers CA. Estradiol and tamoxifen interactions with thyroid hormone in the ovariectomized-thyroidectomized rat. Endocrinology 1995, 136: 1020–33.

    PubMed  CAS  Google Scholar 

  30. Tang HY, Lin HY, Zhang S, Davis FB, Davis PJ. Thyroid hormone causes mitogen-activated protein kinase-dependent phosphorylation of the nuclear estrogen receptor. Endocrinology 2004, 145: 3265–72.

    Article  PubMed  CAS  Google Scholar 

  31. Osborne CK, Coronado EB, Robinson JP. Human breast cancer in the athymic nude mouse: cytostatic effects of long-term antiestrogen therapy. Eur J Cancer Clin Oncol 1987, 23: 1189–96.

    Article  PubMed  CAS  Google Scholar 

  32. Gottardis MM, Jordan VC. Development of tamoxifen-stimulated growth of MCF-7 tumors in athymic mice after long-term antiestrogen administration. Cancer Res 1988, 48: 5183–7.

    PubMed  CAS  Google Scholar 

  33. Barkhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson J, Nilsson S. Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Mol Pharmacol 1998, 54: 105–12.

    PubMed  CAS  Google Scholar 

  34. Kuiper GG, Carlsson B, Grandien K, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997, 138: 863–70.

    PubMed  CAS  Google Scholar 

  35. Webb P, Nguyen P, Valentine C, et al. The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions. Mol Endocrinol 1999, 13: 1672–85.

    Article  PubMed  CAS  Google Scholar 

  36. Paech K, Webb P, Kuiper GG, et al. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 1997, 277: 1508–10.

    Article  PubMed  CAS  Google Scholar 

  37. Zhao X, Lorenc H, Stephenson H, et al. Thyroid hormone can increase estrogen-mediated transcription from a consensus estrogen response element in neuroblastoma cells. Proc Natl Acad Sci U S A 2005, 102: 4890–5.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Green S, Walter P, Kumar V, et al. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 1986, 320: 134–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Nogueira MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conde, S.J., Luvizotto, R.A.M., Síbio, M.T. et al. Tamoxifen inhibits transforming growth factor-α gene expression in human breast carcinoma samples treated with triiodothyronine. J Endocrinol Invest 31, 1047–1051 (2008). https://doi.org/10.1007/BF03345650

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345650

Keywords

Navigation