Skip to main content
Log in

Screening for Cushing’s syndrome in obese women with and without polycystic ovary syndrome

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Obesity and insulin resistance, menstrual abnormalities and clinical and biochemical signs of hyperandrogenism are common features in women with polycystic ovary syndrome (PCOS) and Cushing’s syndrome (CS). Further, an overdrive of the pituitary-adrenal axis has been documented in PCOS and this condition is often present in women with CS. For this reason, screening for hypercortisolism is often needed in obese women with polycystic ovaries. The aim of this study was to compare the diagnostic value of different screening tests for CS in a population of obese premenopausal women with PCOS and without PCOS (OB) and in a group of patients with CS. We reviewed retrospectively the case records of 117 obese women of reproductive age (60 PCOS and 57 OB, BMI 25.1–70.1, 13–45 yr) who were screened for CS at our Institution in the years 1995–2001 and turned out to be free of the disease. Data were compared with those of 58 premenopausal obese women with active CS (BMI 25.1–50.2 kg/m2, 18–45 yr). Screening for CS was performed by urinary free cortisol (UFC) (three consecutive 24-h urine collections), cortisol circadian rhythm (blood samples taken at 08:00–17:00–24:00 h), and 1 mg overnight dexamethasone suppression test (DST). A 24:00 h plasma cortisol (MNC) of 207 nmol/l, a UFC of 221 nmol/day and plasma cortisol after DST of 50 nmol/l and 138 nmol/l were taken as cut-off values for the diagnosis of CS. As expected, patients with CS showed elevated basal and post-dexamethasone plasma cortisol and UFC levels (p<0.001 vs OB and PCOS). PCOS had higher UFC (p<0.005) but not MNC and post-DST plasma cortisol levels compared to OB. DST showed the greatest specificity and diagnostic accuracy in differentiating CS from PCOS and OB (both p<0.05 vs MNC and UFC, according to the 138 nmol/l criterion) while MNC and UFC displayed a similar discriminatory value. However, by using a lower threshold (50 nmol/l) as response criterion, there were no diagnostic differences between DST and the other tests. Specificity and diagnostic accuracy of UFC measurement was lower in PCOS than in OB (both p<0.05) whilst there were no differences between groups for DST and MNC. Similarly, the area under the ROC curve relative to DST, giving an estimate of the inherent diagnostic accuracy of the test, was slightly greater than those of MNC and UFC (z=0.694 and z=0.833 for DST vs MNC and UFC, respectively, both p=NS). These results indicate that the 1-mg DST and MNC are unaffected by the presence of PCOS and can be safely used to screen for CS premenopausal obese women with PCOS, while caution should be exercised in interpreting mildly elevated UFC levels in these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knochenhauer E.S., Key T.J., Kahsar-Miller M., Waggoner W., Boots L.R., Azziz R. Prevalence of the polycystic ovary syndrome in unselected black and white women of the Southeastern United States: a prospective study. J. Clin. Endocrinol. Metab. 1998, 83: 3078–3082.

    PubMed  CAS  Google Scholar 

  2. Solomon C.G. The epidemiology of polycystic ovary syndrome. Endocrinol. Metab. Clin. North Am. 1999, 28: 247–263.

    Article  PubMed  CAS  Google Scholar 

  3. Franks S. Polycystic ovary syndrome. N. Engl. J. Med. 1995, 333: 853–861.

    Article  PubMed  CAS  Google Scholar 

  4. Lado-Abeal J., Rodriguez-Arnao J., Newell-Price J., et al. Menstrual abnormalities in women with Cushing’s disease are correlated with hypercortisolemia rather than raised circulating androgen levels. J. Clin. Endocrinol. Metab. 1998, 83: 3083–3088.

    PubMed  CAS  Google Scholar 

  5. Kaltsas G.A., Korbonits M., Isidori A.M., et al. How common are polycystic ovaries and the polycystic ovarian syndrome in women with Cushing’s syndrome? Clin. Endocrinol. (Oxf.) 2000, 53: 493–500.

    Article  CAS  Google Scholar 

  6. Stewart P.M., Shackleton C., Beastall G.H., Edwards C.R. Alpha-reductase activity in polycystic ovary syndrome. Lancet 1990, 335: 431–433.

    Article  PubMed  CAS  Google Scholar 

  7. Invitti C., Giraldi F.P., Dubini A., De Martin M., Cavagnini F. Increased urinary free cortisol and decreased serum corticosteroid-binding globulin in polycystic ovary syndrome. Acta Endocrinol. (Copenh.) 1991, 125: 28–32.

    CAS  Google Scholar 

  8. Luppa P., Muller B., Jacob K., et al. Variations of steroid hormone metabolites in serum and urine in polycystic ovary syndrome after nafarelin stimulation: evidence for an altered corticoid excretion. J. Clin. Endocrinol. Metab. 1995, 80: 280–288.

    PubMed  CAS  Google Scholar 

  9. Invitti C., De Martin M., Delitala G., Veldhuis J.D., Cavagnini F. Altered morning and nighttime pulsatile corticotropin and cortisol release in polycystic ovary syndrome. Metabolism 1998, 47: 143–148.

    Article  PubMed  CAS  Google Scholar 

  10. Lanzone A., Petraglia F., Fulghesu A.M., Ciampelli M., Caruso A., Mancuso S. Corticotropin-releasing hormone induces an exaggerated response of adrenocorticotropic hormone and cortisol in polycystic ovary syndrome. Fertil. Steril. 1995, 63: 1195–1199.

    PubMed  CAS  Google Scholar 

  11. Atkinson A.B., Mc Ateer E.J., Hadden D.R., Kennedy L., Sheridan B., Traub A.I. A weight-related intravenous dexamethasone suppression test distinguishes obese controls from patients with Cushing’s syndrome. Acta Endocrinol. (Copenh.) 1989, 120: 753–759.

    CAS  Google Scholar 

  12. Chang R.J., Katz S.E. Diagnosis of polycystic ovary syndrome. Endocrinol. Metab. Clin. North Am. 1999, 28: 397–408.

    Article  PubMed  CAS  Google Scholar 

  13. Lin C.L., Wu T.J., Machacek D.A., Jiang N.S., Kao P.C. Urinary free cortisol and cortisone determined by high performance liquid chromatography in the diagnosis of Cushing’s syndrome. J. Clin. Endocrinol. Metab. 1997, 82: 151–155.

    PubMed  CAS  Google Scholar 

  14. Newell-Price J., Trainer P., Besser M., Grossman A. The diagnosis and differential diagnosis of Cushing’s Syndrome and Pseudo-Cushing’s States. Endocr. Rev. 1998, 19: 647–672.

    PubMed  CAS  Google Scholar 

  15. Invitti C., Pecori Giraldi F., De Martin M., Cavagnini F. The Study Group of the Italian Society of Endocrinology on the Pathophysiology of the Hypothalamic-Pituitary-Adrenal Axis. Diagnosis and management of Cushing’s syndrome: results of an Italian Multicentre Study. J. Clin. Endocrinol. Metab. 1999, 84: 440–448.

    Article  PubMed  CAS  Google Scholar 

  16. Gorges R., Knappe G., Gerl H., Ventz M., Stahl F. Diagnosis of Cushing’s syndrome: re-evaluation of midnight plasma cortisol vs urinary free cortisol and low-dose dexamethasone suppression test in a large patient group. J. Endocrinol. Invest. 1999, 22: 241–249.

    Article  PubMed  CAS  Google Scholar 

  17. Montwill J., Igoe D., McKenna T.J. The overnight dexamethasone test is the procedure of choice in screening for Cushing’s syndrome. Steroids 1994, 59: 296–298.

    Article  PubMed  CAS  Google Scholar 

  18. Papanicolaou D.A., Yanovski J.A., Cutler G.B., Chrousos G.B., Nieman L.K. A single midnight serum cortisol measurement distinguishes Cushing’s syndrome from pseudo-Cushing states. J. Clin. Endocrinol. Metab. 1998, 83: 1163–1167.

    PubMed  CAS  Google Scholar 

  19. Newell-Price J., Trainer P., Perry L., Wass J., Grossman A., Besser M. A single sleeping midnight cortisol has 100% sensitivity for the diagnosis of Cushing’s syndrome. Clin. Endocrinol. (Oxf.) 1995, 43: 545–550.

    Article  CAS  Google Scholar 

  20. Nieman L.K. Cushing’s syndrome. In: DeGroot L.J. (ed.), Endocrinology, ed. 4. W.B. Saunders, Philadelphia, 2000, p. 1691.

    Google Scholar 

  21. Zawadzki J.K, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A. Givens J.R., Haseltine F., Merrimam G.R. (Eds.), Polycystic ovary syndrome. Blackwell, Boston, 1992, p. 377.

    Google Scholar 

  22. Yanovski J.A., Cutler G.B. Jr, Chrousos G.P., Nieman L.K. Corticotropin-releasing hormone stimulation following lowdose dexamethasone administration. A new test to distinguish Cushing’s syndrome from pseudo-Cushing’s states. J.A.M.A. 1993, 269: 2232–2238.

    Article  PubMed  CAS  Google Scholar 

  23. Moro M., Putignano P., Losa M., Invitti C., Maraschini C., Cavagnini F. The desmopressin test in the differential diagnosis between Cushing’s disease and pseudo-Cushing states. J. Clin. Endocrinol. Metab. 2000, 85: 3569–3574.

    PubMed  CAS  Google Scholar 

  24. Meeran K., Hattersley A., Mould G., Bloom S.R. Venepuncture causes rapid rise in plasma ACTH. Brit. J. Clin. Pract. 1993, 47: 246–247.

    PubMed  CAS  Google Scholar 

  25. Barry H.C., Ebell M.H. Test characteristics and decision rules. Endocrinol. Metab. Clin. North Am. 1977, 26: 45–65.

    Article  Google Scholar 

  26. Swets J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240: 1285–1293.

    Article  PubMed  CAS  Google Scholar 

  27. Hanley J.A., McNeil B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143: 29–36.

    PubMed  CAS  Google Scholar 

  28. Wood P.J., Barth J.H., Freedman D.B., Perry L., Sheridan B. Evidence for the low dose dexamethasone suppression test to screen for Cushing’s syndrome-recommendations for a protocol for biochemistry laboratories. Ann. Clin. Biochem. 1997, 34: 222–229.

    Article  PubMed  CAS  Google Scholar 

  29. Talbott E., Guzick D., Clerici A., et al. Coronary heart disease risk factors in women with polycystic ovary syndrome. Arter. Thromb. Vasc. Biol. 1995, 15: 821–826.

    Article  CAS  Google Scholar 

  30. Rodin A., Thakkar H., Taylor N., Clayton R. Hyperandrogenism in polycystic ovary syndrome. Evidence of dysregulation of 11 beta-hydroxysteroid dehydrogenase. N. Engl. J. Med. 1994, 330: 460–465.

    Article  PubMed  CAS  Google Scholar 

  31. Ehrmann D.A., Barnes R.B., Rosenfield R.L. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr. Rev. 1995, 16: 322–353.

    Article  PubMed  CAS  Google Scholar 

  32. Kero J., Poutanen M., Zhang F.P., et al. Elevated luteinizing hormone induces expression of its receptor and promotes steroidogenesis in the adrenal cortex. J. Clin. Invest. 2000, 105: 633–641.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Raff H., Raff J.L., Findling J.W. Late-night salivary cortisol as a screening test for Cushing’s syndrome. J. Clin. Endocrinol. Metab. 1998, 83: 2681–2686.

    PubMed  CAS  Google Scholar 

  34. Papanicolau D.A., Mullen N., Kyrou I., Nieman L.N. Nighttime salivary cortisol: a useful test for the diagnosis of Cushing’s syndrome. J. Clin. Endocrinol. Metab. 2002 87: 4515–4521.

    Article  CAS  Google Scholar 

  35. Putignano P., Kaltsas G.A., Satta M.A., Grossman A.B. The effect of anti-convulsant drugs on adrenal function. Horm. Metab. Res. 1998, 30: 389–397.

    Article  PubMed  CAS  Google Scholar 

  36. Kennedy L., Atkinson A.B., Johnston H., Sheridan B., Hadden D.R. Serum cortisol concentrations during low dose dexamethasone suppression test to screen for Cushing’s syndrome. B.M.J. 1984, 289: 1188–1191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Cavagnini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putignano, P., Bertolini, M., Losa, M. et al. Screening for Cushing’s syndrome in obese women with and without polycystic ovary syndrome. J Endocrinol Invest 26, 539–544 (2003). https://doi.org/10.1007/BF03345217

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03345217

Key-words

Navigation