Journal of Endocrinological Investigation

, Volume 26, Issue 5, pp 407–413 | Cite as

Hypothalamo-pituitary-adrenal axis in acute myocardial infarction treated by percutaneous transluminal coronary angioplasty: Effect of time of presentation

  • F. Paganelli
  • C. Frachebois
  • J. G. Velut
  • S. Boullu
  • N. Sauze
  • J. P. Rosso
  • P. Barnay
  • P. Sbragia
  • R. Gelisse
  • M. Grino
  • S. Levy
  • Charles Oliver
Original Article


Acute myocardial infarction (AMI) is associated with a stimulation of cortisol which lasts 24 hours in patients treated by thrombolysis. Percutaneous transluminal coronary angioplasty (PTCA) is an alternative treatment for AMI which reduces the length of myocardial ischemia. Our objective was the determination of the amplitude and duration of cortisol and other hormones of the hypothalamo-pituitaryadrenal (HPA) axis release in patients undergoing PTCA. These responses were also analyzed in relation with the time of onset of AMI. The effect of coronarography with or without angioplasty in patients without AMI was also studied. Plasma ACTH, cortisol, corticotropin-releasing hormone and arginine vasopressin levels were determined during the first 48 hours in 20 patients with first AMI, treated by PTCA and in 10 patients without AMI undergoing coronarography (and angioplasty in five of them). A strong stimulation of the HPA axis was observed in AMI patients, but the duration of cortisol secretion was significantly reduced (less than 8 hours) as compared with previous studies in patients treated with thrombolysis. A clear-cut ACTH-cortisol dissociation was also observed after the third hour. ACTH and cortisol stimulation was higher in patients admitted between 04:00 h and 16:00 h than in patients admitted between 16:00 h and 04:00 h In patients without AMI, coronarography induced a moderate, but significant short-lasting ACTH and cortisol stimulation. In conclusion, our data suggest that the degree of stimulation of the HPA axis may depend upon the type of treatment and the circadian rhythm of this axis.


Acute myocardial infarction PTCA ACTH cortisol HPA axis circadian rhythm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ceremuzynski L. Hormonal and metabolic reactions evoked by acute myocardial infarction. Circ. Res. 1981, 48: 767–776.PubMedCrossRefGoogle Scholar
  2. 2.
    Logan R.W., Murdoch W.R. Blood levels of hydrocortisone, transaminases, and cholesterol after myocardial infarction. Lancet 1966, 2: 521–524.PubMedCrossRefGoogle Scholar
  3. 3.
    Bailey R.B., Abernethy M.H., Beaven D.W. Adrenocortical response to the stress of an acute myocardial infarction. Lancet 1967, 1: 970–973.PubMedCrossRefGoogle Scholar
  4. 4.
    Bain R.J.I., Fox J.P., Jagger J., Davies M.K., Littler W.A., Murray R.G. Serum cortisol levels predict infarct size and patient mortality. Int. J. Cardiol. 1992, 37: 145–150.PubMedCrossRefGoogle Scholar
  5. 5.
    Wiener K. Plasma cortisol, corticosterone and urea in acute myocardial infarction: clinical and biochemical correlations. Clin. Chim. Acta 1977, 76: 243–250.PubMedCrossRefGoogle Scholar
  6. 6.
    Klein A.J., Palmer L.A. Plasma cortisol in myocardial infarction: a correlation with shock and survival. Am. J. Cardiol. 1963, 11: 332–337.PubMedCrossRefGoogle Scholar
  7. 7.
    Hansen B., Beck-Nielsen J., Juul J., Nielsen B.L., Nielsen F.U. Plasma hydrocortisone values in heart disease. Acta Med. Scand. 1969, 186: 411–416.PubMedCrossRefGoogle Scholar
  8. 8.
    Prakash R., Parmley W.W., Horvat M., Swan H.J.C. Serum cortisol, plasma free acids, and urinary catecholamines as indicators of complications in acute myocardial infarction. Circulation 1972, 155: 736–745.CrossRefGoogle Scholar
  9. 9.
    Chopra M.P., Thadani U., Aber C.P., Portal R.W., Parkes J. Plasma cortisol, urinary 17-hydroxycorticoids, and urinary vanilyl mandelic acid after acute myocardial infarction. Br. Heart. J. 1972, 34: 992–997.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Nitter-Hauge S., Kirkeby K., Alvsaker J.O., Aakwaag A. Plasma 11-hydroxycorticosteroids in acute myocardial infarction. Acta Med. Scand. 1972, 192: 535–538.PubMedCrossRefGoogle Scholar
  11. 11.
    Donald R.A., Crozier I.G., Foy S.G. et al. Plasma corticotrophin releasing hormone, vasopressin, ACTH and cortisol responses to acute myocardial infarction. Clin. Endocrinol. (Oxf.) 1994, 40: 499–504.CrossRefGoogle Scholar
  12. 12.
    Bain R.J.I., Poeppinghaus V.J.I., Jones G.M., Peaston M.J.T. Cortisol level predicts myocardial infarction in patients with ischaemic chest pain. Int. J. Cardiol. 1989, 25: 69–72.PubMedCrossRefGoogle Scholar
  13. 13.
    Grines C.L. Primary angioplasty. The strategy of choice. N. Engl. J. Med. 1996, 335: 1313–1317.PubMedGoogle Scholar
  14. 14.
    Caraty A., Grino M., Locatelli A., et al. Insulin-induced hypoglycaemia stimulates corticotropin-releasing factor and arginine vasopressin into hypophysial portal blood of conscious unrestrained rams. J. Clin. Invest. 1990, 85: 1716–1721.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Robinson I.C.A.F. The development and evaluation of a sensitive and specific radioimmunoassay for oxytocin in unextracted plasma. Immunoassay. 1980, 1: 323–347.CrossRefGoogle Scholar
  16. 16.
    Oldroyd K.G., Harvey K., Gray C.E., Beastall G.H., Cobbe S.M. β Endorphin release in patients after spontaneous and provoked acute myocardial ischaemia. Br. Heart J. 1992, 67: 230–235.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Dampney R.A.L. Functional organisation of central pathways regulating the cardiovascular system. Pharmacol. Rev. 1994, 74: 323–364.Google Scholar
  18. 18.
    Kiss JZ. Dynamism of chemoarchitecture in the hypothalamic paraventricular nucleus. Brain Res. Bull. 1998, 20: 966–708.Google Scholar
  19. 19.
    Charles C.J., Rogers S.J., Donald R.A., Ikram H., Prickett T., Richards A.M. Hypothalamo-pituitary-adrenal axis response to coronary artery embolization: an ovine model of acute myocardial infarction. J. Endocrinol. 1997, 152: 489–493.PubMedCrossRefGoogle Scholar
  20. 20.
    Naito Y., Kukata J., Tamai S., et al. Biphasic changes in hypothalamo- pituitary-adrenal function during the early recovery period after major abdominal surgery. J. Clin. Endocrinol. Metab. 1991, 73: 111–117.PubMedCrossRefGoogle Scholar
  21. 21.
    Roth-Isigkeit A., Schmucker P. Postoperative dissociation of blood levels of cortisol and adrenocorticotropin after coronary artery bypass grafting surgery. Steroids 1997, 62: 695–699.PubMedCrossRefGoogle Scholar
  22. 22.
    Vermes I., Beishuizen A., Hampsink R.M., Haanen C. Dissociation of plasma adrenocorticotropin and cortisol levels in critically ill patients: possible role of endothelin and atrial natriuretic hormone. J. Clin. Endocrinol. Metab. 1995, 80: 1238–1242.PubMedGoogle Scholar
  23. 23.
    Charlton B.G. Adrenal cortical innervation and glucocorticoid secretion. J. Endocrinol. 1990, 126: 5–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Marx C., Ehrhart-Bornstein M., Scherbaum W.A., Bornstein S.R. Regulation of adrenocortical function by cytokines — relevance for immune-endocrine interaction. Horm. Metab. Res. 1998, 30: 416–420.PubMedCrossRefGoogle Scholar
  25. 25.
    Guillen I., Blanes M., Gomez-Lechon M.J., Castell J.V. Cytokine signaling during myocardial infarction: sequential appearance of IL-1β and IL-6. Am. J. Physiol. 1995, 269: R229–R235.PubMedGoogle Scholar
  26. 26.
    Antoni F.A. Vasopressinergic control of pituitary adrenocorticotropin secretion comes of age. Front. Neuroendocrinol. 1993, 14: 76–122.PubMedCrossRefGoogle Scholar
  27. 27.
    Zing H.H. Vasopressin and oxytocin receptors. Baillere’s Clin. Endocrinol. Metab. 1996, 10: 75–96.CrossRefGoogle Scholar
  28. 28.
    Hader O., Bahr V., Hensen J., Hofbauer K.G., Oelkers WKH. Effects of a V1-vasopressin antagonist on ACTH release following vasopressin infusion or insulin-induced hypoglycemia in normal men. Acta. Endocrinol. (Copenh.) 1990, 123: 622–628.Google Scholar
  29. 29.
    Col J., Petein M., Van Eyll C., Cheron P., Charlier A.A., Pouleur H. Early changes in sodium and water balances in patients with acute myocardial infarction: relationship to haemodynamics and creatine kinase. Eur. J. Clin. Invest. 1984, 14: 247–254PubMedCrossRefGoogle Scholar
  30. 30.
    Brar R.B., Stephanou A., Okosi A., Knight R., Lowry P.J., Latchman D.S. Regulation of the CRH promoter in ischaemic cardiac myocytes. Annual Meeting of the Endocrine Society 1998, 207 (Abst.)Google Scholar
  31. 31.
    Muller J.E., Stone P.H., Turi Z.G., et al. Circadian variation in the frequency of onset of acute myocardial infarction. N. Engl. J. Med. 1985, 313: 1315–1322.PubMedCrossRefGoogle Scholar
  32. 32.
    Willich S.N., Linderer T., Wegscheider K., et al. Increased morning incidence of myocardial infarction in the ISAM study: absence with prior β-adrenergic blockade. Circulation. 1989, 80: 853–858.PubMedCrossRefGoogle Scholar
  33. 33.
    Boden G. Hormonal and metabolic disturbances during acute and subacute myocardial infarction in man. Diabetologia 1971, 2: 240–246.CrossRefGoogle Scholar
  34. 34.
    Oswald G.A., Smith C.C.T., Betteridge D.J., Yudkin J.S. Determinants and importance of stress hyperglycaemia in non-diabetic patients with myocardial infarction. Br. Med. J. 1986, 293: 917–922.CrossRefGoogle Scholar
  35. 35.
    Fimognari F.P., Piccirillo G., et al. Associated daily biosynthesis of cortisol and thromboxane A2: a preliminary report. J. Lab. Clin. Med. 1996, 128: 115–121.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2003

Authors and Affiliations

  • F. Paganelli
    • 1
  • C. Frachebois
    • 2
  • J. G. Velut
    • 3
  • S. Boullu
    • 2
  • N. Sauze
    • 5
  • J. P. Rosso
    • 4
  • P. Barnay
    • 1
  • P. Sbragia
    • 1
  • R. Gelisse
    • 1
  • M. Grino
    • 5
  • S. Levy
    • 1
  • Charles Oliver
    • 2
  1. 1.Department of Cardiology, Assistance Publique Hôpitaux de Marseille, Institut Fédératif Jean Roche, School of MedicineUniversité de la MéditerranéeMarseilleFrance
  2. 2.Department of Endocrinology, Metabolic Diseases and Nutrition, Assistance Publique Hôpitaux de Marseille, Institut Fédératif Jean Roche, School of MedicineUniversité de la MéditerranéeMarseille Cedex 20France
  3. 3.Department of Internal Medicine, Assistance Publique Hôpitaux de Marseille, Institut Fédératif Jean Roche, School of MedicineUniversité de la MéditerranéeMarseilleFrance
  4. 4.Laboratory of Biochemistry, Assistance Publique Hôpitaux de Marseille, Institut Fédératif Jean Roche, School of MedicineUniversité de la MéditerranéeMarseilleFrance
  5. 5.INSERM U 501, Assistance Publique Hôpitaux de Marseille, Institut Fédératif Jean Roche, School of MedicineUniversité de la MéditerranéeMarseilleFrance

Personalised recommendations