Journal of Endocrinological Investigation

, Volume 25, Issue 8, pp 716–723 | Cite as

Effects of continuous light and melatonin treatment on energy metabolism of the rat

  • A-. M. Mustonen
  • P. Nieminen
  • H. Hyvärinen
Original Article


Melatonin affects food intake, body mass and adiposity of several mammals, but the effects of melatonin on energy metabolism remain largely unknown. This study investigated subacute effects of persistent melatonin treatment and continuous light on carbohydrate and fat metabolism of rat liver and kidney. The male and female rats (no.=40) were maintained either in 12L:12D photoperiod or in constant light. Half the rats in both lighting conditions were treated with continuousrelease melatonin implants. Liver lipid concentrations, liver and kidney glucose-6-phosphatase, glycogen phosphorylase and lipase esterase activities, glycogen contents as well as plasma T4, T3, insulin, glucose and melatonin concentrations were determined. There was clear sexual dimorphism in the responses to exogenous melatonin and constant light. Continuous light stimulated carbohydrate metabolism of rat liver. Exogenous melatonin enhanced utilization of liver carbohydrates but suppressed hepatic lipolysis. Changes in normal circulating melatonin concentrations led to enhanced utilization of kidney carbohydrates supporting a role for melatonin in renal function. Both exogenous melatonin and constant light seem to have a strong regulatory effect on rat energy metabolism.


Glucose-6-phosphatase glycogen glycogen phosphorylase lipase esterase lipids melatonin rat T4 T3 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arendt J. Melatonin and the mammalian pineal gland. Chapman & Hall, Cambridge, 1995, p. 72.Google Scholar
  2. 2.
    Reiter R.J. Pineal melatonin: cell biology of its synthesis and of its physiological interactions. Endocr. Rev. 1991, 12: 151–180.PubMedCrossRefGoogle Scholar
  3. 3.
    Reiter R.J., Klein D.C. Observations on the pineal gland, the Harderian glands, the retina, and the reproductive organs of adult female rats exposed to continuous light. J. Endocrinol. 1971, 51: 117–125.PubMedCrossRefGoogle Scholar
  4. 4.
    Tamarkin L., Baird C.J., Almeida O.F.X. Melatonin: a coordinating signal for mammalian reproduction? Science 1985, 227: 714–720.PubMedCrossRefGoogle Scholar
  5. 5.
    Saarela S., Reiter R.J. Function of melatonin in thermoregulatory processes. Life Sci. 1994, 54: 295–311.PubMedCrossRefGoogle Scholar
  6. 6.
    Allain D., Rougeot J. Induction of autumn moult in mink (Mustela vison Peale and Beauvois) with melatonin. Reprod. Nutr. Dev. 1980, 20: 197–201.PubMedCrossRefGoogle Scholar
  7. 7.
    Martin M.T., Azpiroz F., Malagelada J.R. Melatonin and the gastrointestinal tract. Thérapie 1998, 53: 453–458.PubMedGoogle Scholar
  8. 8.
    Acuña-Castroviejo D., Reiter R.J., Menéndez-Peláez A., Pablos M.I., Burgos A. Characterization of high-affinity melatonin binding sites in purified cell nuclei of rat liver. J. Pineal Res. 1994, 16: 100–112.PubMedCrossRefGoogle Scholar
  9. 9.
    Song Y., Tam P.C., Poon A.M.S., Brown G.M., Pang S.F. 2-[125I]Iodomelatonin-binding sites in the human kidney and the effect of guanosine 5′-O-(3-thiotriphosphate). J. Clin. Endocrinol. Metab. 1995, 80: 1560–1565.PubMedGoogle Scholar
  10. 10.
    Williams L.M., Hannah L.T., Adam C.L., Bourke D.A. Melatonin receptors in red deer fetuses (Cervus elaphus). J. Reprod. Fert. 1997, 110: 145–151.CrossRefGoogle Scholar
  11. 11.
    Wade G.N., Bartness T.J. Seasonal obesity in Syrian hamsters: effects of age, diet, photoperiod, and melatonin. Am. J. Physiol. 1984, 247: R328–R334.PubMedGoogle Scholar
  12. 12.
    Valtonen M., Vakkuri O., Blomstedt L. Autumnal timing of photoperiodic manipulation critical via melatonin to winter pelage development in mink. Anim. Sci. 1995, 61: 589–596.CrossRefGoogle Scholar
  13. 13.
    Le Gouic S., Delagrange P., Atgié C., et al. Effects of both a melatonin agonist and antagonist on seasonal changes in body mass and energy intake in the garden dormouse. Int. J. Obes. Relat. Metab. Disord. 1996, 20: 661–667.PubMedGoogle Scholar
  14. 14.
    Milcu S.M., Milcu I. Über ein hypoglykämisch wirkendes Hormon in der Zirbeldrüse. Die Medizinische 1958, 17: 711–715.Google Scholar
  15. 15.
    de Vlaming V.L., Sage M., Charlton C.B., Tiegs B. The effects of melatonin on lipid deposition in Cyprinodontid fishes and on pituitary prolactin activity in Fundulus similis. J. Comp. Physiol. 1974, 94: 309–319.CrossRefGoogle Scholar
  16. 16.
    Harris R.A. Carbohydrate metabolism I: major metabolic pathways and their control. In: Devlin T.M. (Ed.), Textbook of biochemistry with clinical correlations, 2nd ed. John Wiley & Sons, Singapore, 1986, p. 261.Google Scholar
  17. 17.
    Richardson B.A., Studier E.H., Stallone J.N., Kennedy C.M. Effects of melatonin on water metabolism and renal function in male Syrian hamsters (Mesocricetus auratus). J. Pineal Res. 1992, 13: 49–59.PubMedCrossRefGoogle Scholar
  18. 18.
    Kawashima K., Miwa Y., Fujimoto K., Oohata H., Nishino H., Koike H. Antihypertensive action of melatonin in the spontaneously hypertensive rat. Clin. Exp. Hypertens. 1987, A9: 1121–1131.CrossRefGoogle Scholar
  19. 19.
    Tsuda T., Ide M., Iigo M. Influences of season and of temperature, photoperiod, and subcutaneous melatonin infusion on the glomerular filtration rate of ewes. J. Pineal Res. 1995, 19: 166–172.PubMedCrossRefGoogle Scholar
  20. 20.
    O’Callaghan D., Karsch F.J., Boland M.P., Roche J.F. What photoperiodic signal is provided by a continuous-release melatonin implant? Biol. Reprod. 1991, 45: 927–933.PubMedCrossRefGoogle Scholar
  21. 21.
    Hers H.G., van Hoof F. Enzymes of glycogen degradation in biopsy material. In: Colowick S., Kaplan N.O. (Eds.), Methods in enzymology. Academic Press, NY, 1966, p. 525.Google Scholar
  22. 22.
    Seligman A.M., Nachlas M.M. Lipase. In: Bermayer H.U. (Ed.), Methoden der Enzymatischen Analyse. Verlag Chemie GmbH, Weinheim, Germany, 1962, p. 776.Google Scholar
  23. 23.
    Lo S., Russell J.C., Taylor A.W. Determination of glycogen in small tissue samples. J. Appl. Physiol. 1970, 28: 234–236.PubMedGoogle Scholar
  24. 24.
    Folch J., Lees M., Sloane Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues J. Biol. Chem. 1957, 226: 497–509.PubMedGoogle Scholar
  25. 25.
    Dark J., Rayha L.L., Clark-Lane I., Kimler V. Melatonin and lighting condition: absence of long-term effects on food intake and body weight regulation in the albino rat. Physiol. Behav. 1980, 25: 855–857.PubMedCrossRefGoogle Scholar
  26. 26.
    Kaminsky Y.G., Kosenko E.A., Kondrashova M.N. Analysis of the circadian rhythm in energy metabolism of rat liver. Int. J. Biochem. 1984, 16: 629–639.PubMedCrossRefGoogle Scholar
  27. 27.
    Chesworth M.J., Cassone V.M., Armstrong S.M. Effects of daily melatonin injections on activity rhythms of rats in constant light. Am. J. Physiol. 1987, 253: R101–R107.PubMedGoogle Scholar
  28. 28.
    Mazepa R.C., Cuevas M.J., Collado P.S., Gonzáles-Gallego J. Melatonin increases muscle and liver glycogen content in nonexercised and exercised rats. Life Sci. 2000, 66: 153–160.PubMedCrossRefGoogle Scholar
  29. 29.
    Nieminen P., Käkelä R., Mustonen A-M., Hyvärinen H., Asikainen J. Exogenous melatonin affects lipids and enzyme activities in mink (Mustela vison) liver. Comp. Biochem. Physiol. 2001, 128C: 203–211.Google Scholar
  30. 30.
    Osei P., Robbins K.R., Shirley H.V. Effects of exogenous melatonin on growth and energy metabolism of chickens. Nutr. Res. 1989, 9: 69–81.CrossRefGoogle Scholar
  31. 31.
    Esquifino A., Agrasal C., Velázquez E., Villanúa M.A., Cardinali D.P. Effect of melatonin on serum cholesterol and phospholipid levels, and on prolactin, thyroid-stimulating hormone and thyroid hormone levels, in hyperprolactinemic rats. Life Sci. 1997, 61: 1051–1058.PubMedCrossRefGoogle Scholar
  32. 32.
    Hoyos M., Guerrero J.M., Perez-Cano R., et al. Serum cholesterol and lipid peroxidation are decreased by melatonin in diet-induced hypercholesterolemic rats. J. Pineal Res. 2000, 28: 150–155.PubMedCrossRefGoogle Scholar
  33. 33.
    Vance D.E. Biosynthesis of membrane lipids. In: Zubay G.L. (Ed.), Biochemistry, 4th ed. Wm. C. Brown Publishers, Dubuq-ue, 1998, p. 507.Google Scholar
  34. 34.
    Gorray K.C., Quay W.B., Ewart R.B.L. Effects of pinealectomy and pineal incubation medium and sonicates on insulin release by isolated pancreatic islets in vitro. Horm. Metab. Res. 1979, 11: 432–436.PubMedCrossRefGoogle Scholar
  35. 35.
    Aoyama H., Mori W., Mori N. Anti-glucocorticoid effects of melatonin in young rats. Acta Pathol. Jpn. 1986, 36: 423–428.PubMedGoogle Scholar
  36. 36.
    Vriend J., Richardson B.A., Vaughan M.K., Johnson L.Y., Reiter R.J. Effects of melatonin on thyroid physiology of female hamsters. Neuroendocrinology 1982, 35: 79–85.PubMedCrossRefGoogle Scholar
  37. 37.
    John T.M., Viswanathan M., George J.C., Scanes C.G. Influence of chronic melatonin implantation on circulating levels of catecholamines, growth hormone, thyroid hormones, glucose, and free fatty acids in the pigeon. Gen. Comp. Endocrinol. 1990, 79: 226–232.PubMedCrossRefGoogle Scholar
  38. 38.
    Randall D., Burggren W., French K. Ionic and osmotic balance. In: Eckert animal physiology, mechanisms and adaptations, 4th ed. W.H. Freeman and Company, NY, 1997, p. 571.Google Scholar
  39. 39.
    Campbell C.S., Schwartz N.B. The impact of constant light on the estrous cycle of the rat. Endocrinology 1980, 106: 1230–1238.PubMedCrossRefGoogle Scholar
  40. 40.
    Rocha D.C.M., Debeljuk L., Franca L.R. Exposure to constant light during testis development increases daily sperm production in adult Wistar rats. Tissue Cell 1999, 31: 372–379.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2002

Authors and Affiliations

  1. 1.Department of BiologyUniversity of JoensuuJoensuuFinland

Personalised recommendations