Journal of Endocrinological Investigation

, Volume 25, Issue 7, pp 635–638 | Cite as

Impairment of AVP regulation in 17α-hydroxylase deficiency, a unique form of adrenal insufficiency

  • Â. M. O. Leal
  • P. C. L. Elias
  • A. C. Moreira
Case Report


17α-hydroxylase deficiency (17α- OHDS) results in decreased production of cortisol and sex steroids and hypokalemia secondary to excess mineralocorticoids. It has long been known that glucocorticoid deficiency is associated with impaired urinary dilution and increased secretion of vasopressin (AVP). On the other hand, chronic hypokalemia is a well-established cause of nephrogenic diabetes insipidus. We evaluated the status of AVP secretion in a patient with 17α-OHDS and in 8 normokalaemic control subjects during hypertonic saline infusion (5% NaCl 0.06 min). The patient was evaluated on 3 separate occasions: pre-treatment (PT), and daily treatment with 0.375 mg (T1) and 0.5 mg (T2) dexamethasone. Blood was collected for AVP, corticosterone (B), plasma osmolality (pOsm) and electrolyte determination. In the control group plasma AVP levels increased from 0.8±0.1 to 4.1±0.6 pmol/l and pOsm increased from 282±2 to 302±1.5 mosmol/kg. In the patient, plasma AVP levels increased from 9.3 to 12.3; 4.5 to 6.2; and 2.5 to 6.2 pmol/l, and pOsm increased from 282 to 302, from 290 to 307, and from 291 to 311 mosmol/kg during the PT, T1 and T2 conditions, respectively. Serum potassium levels were low (2.6 mmol/l) during PT and reached normal values after treatment. There was a significant negative correlation between plasma AVP and serum potassium levels (r=−0.71; p<0.001). The results originally indicate that high plasma AVP levels may be found in 17α-OHDS, suggesting an effect of F deficiency per se. In addition, a concealed partial nephrogenic diabetes insipidus secondary to chronic hypokalemia cannot be excluded.


AVP 17α-hydroxylase deficiency hypokalemia adrenal insufficiency nephrogenic diabetes insipidus glucocorticoid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biglieri E.G., Herron M.A., Brust N. 17α-hydroxylase deficiency in man. J. Clin. Invest. 1966, 45: 1946–1954.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Moreira A.C., Leal Â.M.O., Castro M. Characterization of adrenocorticotropin secretion in a patient with 17α-hydroxylase deficiency. J. Clin. Endocrinol Metab. 1990, 71: 86–91.PubMedCrossRefGoogle Scholar
  3. 3.
    Boykin J., DeTorrenté A., Erickson A., Robertson G., Schrier R.W. Role of plasma vasopressin in impaired water excretion of glucocorticoid deficiency. J. Clin. Invest. 1978, 62: 738–744.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Linas S.L., Berl T., Robertson G.L., Aisenbrey G.A., Schrier R.W., Anderson R.J. Role of vasopressin in the impaired water excretion of glucocorticoid deficiency. Kidney Intern. 1980, 18: 58–67.CrossRefGoogle Scholar
  5. 5.
    Mandell I.N., DeFronzo R.A., Robertson G.L., Forrest J.N. Jr. Role of plasma arginine vasopressine in the impaired water diuresis of isolated glucocorticoid deficiency in the rat. Kidney Intern. 1980, 17: 186–195.CrossRefGoogle Scholar
  6. 6.
    Aguilera G., Lightman S.L., Kiss A. Regulation of the hypothalamic- pituitary-adrenal axis during water deprivation. Endocrinology 1993, 132: 241–248.PubMedGoogle Scholar
  7. 7.
    Hollander W. Jr., Winters R.W., Williams T.F., Bradley J., Oliver J. Welt L.G. Defect in the renal tubular reabsortion of water associated with potassium depletion in rats. Am. J. Physiol. 1957, 189: 557–563.PubMedGoogle Scholar
  8. 8.
    Oliver J., MacDowell M., Welt L.G., et al. The renal lesions of electrolyte imbalance. J. Experiment. Med. 1957, 106: 563–574.CrossRefGoogle Scholar
  9. 9.
    Relman A.S., Schwartz W.B. The kidney in potassium depletion. Am. J. Med. 1958, 24: 764–773.PubMedCrossRefGoogle Scholar
  10. 10.
    Giebisch G., Lozano R., Maceo A. The effects of adrenal steroids and potassium depletion on the elaboration of an osmotically concentrated urine. J. Clin. Invest. 1959, 38: 843–853.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Manitius A., Levitin H., Beck D., Epstein F.H. On the mechanism of impairment of renal concentrating ability in potassium deficiency. J. Clin. Invest. 1960, 39: 684–692.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Rubini M.E. Water excretion in potassium-deficient man. J. Clin. Invest. 1961, 40: 2215–2224.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Elias L.L.K., Antunes-Rodrigues J., Elias P.C.L., Moreira A.C. Effect of plasma osmolality on pituitary-adrenal responses to corticotropin-releasing hormone and atrial natriuretic peptide changes in central diabetes insipidus. J. Clin. Endocrinol. Metab. 1997, 82: 1243–1247.PubMedGoogle Scholar
  14. 14.
    López-Jimenez M., Valença M.M., Moreira A.C., Antunes-Rodrigues J. Ether and immobilization, stress effects on pituitary-adrenal function in hemidecorticated rats. Braz. J. Med. Biol. Res. 1989, 22: 779–782.PubMedGoogle Scholar
  15. 15.
    Dingman J.F., Despointes R.H. Adrenal steroid inhibition of vasopressin release from the neurophysis of normal subjects and patients with Addison’s disease. J. Clin. Invest. 1960, 39: 1851–1863.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kamoi K., Tamura T., Tanaka K., Ishibashi M., Yamaji T. Hyponatremia and osmoregulation of thirst and vasopressin secretion in patients with adrenal insufficiency. J. Clin. Endocrinol. Metab. 1993, 77: 1584–1588.PubMedGoogle Scholar
  17. 17.
    Reidenberg M.M., Ohler E.A., Sevy R.W., Harakal C. Hemodynamic changes in adrenalectomized dogs. Endocrinology 1963, 72: 918–923.PubMedCrossRefGoogle Scholar
  18. 18.
    Reid I.A., Tu W.H., Otsuka K., Assaykeen T.A., Ganong W.F. Studies concerning the regulation and importance of plasma angiotensinogen concentration in dog. Endocrinology 1973, 93: 107–111.PubMedCrossRefGoogle Scholar
  19. 19.
    Salomez-Granier F., Leclerc-Coornaert L., Lefebvre J., Racadot A., Linquette M. Étude de l’hormone antidiurétique (arginine-vasopressine) dans 24 cas d’insuffisance surrénale primitive. Ann. Endocrinol. (Paris) 1983, 44: 371–376.Google Scholar
  20. 20.
    Rutecki G.W., Cox J.W., Robertson G.W., Francisco L.L., Ferris T.F. Urinary concentrating ability and antidiuretic hormone responsiveness in the potassium-depleted dog. J. Lab. Clin. Med. 1982, 100: 53–60.PubMedGoogle Scholar
  21. 21.
    Kim J.K., Summer S.N., Berl T. The cyclic AMP system in the inner medullary collecting duct of the potassium-depleted rat. Kidney Intern. 1984, 26: 384–391.CrossRefGoogle Scholar
  22. 22.
    Marples D., Frokiaer J., Dorup J., Knepper M.A., Nielsen S. Hypokalemia-induced down-regulation of aquaporin-2 water channel expression in rat kidney medulla and cortex. J. Clin. Invest. 1996, 97: 1960–1968.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Jespersen B., Danielsen H., Pedersen E.B. Effect of chronic hypokalemia on renal concentration ability and secretion of arginine vasopressin. Scand. J. Clin. Lab. Invest. 1987, 47: 5–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Moreira A.C., Leal Â.M.O., Castro M. Adrenocorticotropincorticosterone relationship during dexamethasone therapy in 17α-hydroxylase deficiency. Horm. Metab. Res. 1992, 24: 305–352.CrossRefGoogle Scholar
  25. 25.
    Ma X.M., Levy A., Lightman S.L. Rapid changes of heteronuclear RNA for arginine vasopressin but not for corticotropin-releasing hormone in response to acute corticosterone administration. J. Neuroendocrinol. 1997, 9: 723–728.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2002

Authors and Affiliations

  • Â. M. O. Leal
    • 1
  • P. C. L. Elias
    • 1
  • A. C. Moreira
    • 1
  1. 1.Endocrinology Division, Department of MedicineSchool of Medicine Ribeirão Preto-USPRibeirão PretoBrazil

Personalised recommendations