International Journal of Thermophysics

, Volume 19, Issue 6, pp 1555–1566 | Cite as

Coherent Neutron Scattering from the Ionic Mixture of Ethylammonium Nitrate and Deuterated n-Octanol in the Critical Region

  • M. Bonetti
  • P. Calmettes


Neutron scattering measurements were performed on the ionic mixture of ethylammonium nitrate and deuterated n-octanol in order to get information about its microscopic structure in the vicinity of the critical point. Scattering spectra were recorded for momentum transfers q, ranging from 0.06 to 0.46 Å−1. A sample at the critical salt mole fraction X c = 0.760, was studied in its homogeneous phase at various temperatures between (T c + 0.93)°C and (T c + 24.12)°C, where T c is the critical temperature. This corresponds to reduced temperatures τ = (T− T c)/Tc, in the range 3.1 × 10−3≤τ≤8.0 × 10−2. The spectra of the coherent intensity scattered from the critical mixture are described well by the Fisher-Langer approximation in a wide range of values, ξ being the critical correlation length. However, at least one additional shorter characteristic length is needed for a proper description of the spectra over the whole range of q.


critical-point phenomena ionic mixtures neutron scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Pitzer, Acc. Chem. Res. 13:333 (1980).Google Scholar
  2. 2.
    J. M. H. Levelt Sengers and J. A. Given, Mol. Phys. 80:88 (1993).CrossRefGoogle Scholar
  3. 3.
    M. E. Fisher, J. Stat. Phys. 75:1 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    H. Weingärtner, M. Kleemeier, S. Wiegand, and W. Schröer, J. Stat. Phys. 78:169 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    H. Weingärtner, T. Merkel, U. Maurer, J.-P. Conzen, H. Glasbrenner, and S. Käshammer, Ber. Bunsenges Phys. Chem. 95:1579 (1991).CrossRefGoogle Scholar
  6. 6.
    H. Xu, H. L. Friedman, and F. O. Raineri, J. Solut. Chem. 20:739 (1991).CrossRefGoogle Scholar
  7. 7.
    W. Kunz, P. Calmettes, and P. Turq, J. Chem. Phys. 92:2367 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    W. Kunz, P. Turq, P. Calmettes, J. Barthel, and L. Klein, J. Phys. Chem. 96:2743 (1992).CrossRefGoogle Scholar
  9. 9.
    W. Kunz, P. Calmettes, T. Cartailler, and P. Turq, J. Chem. Phys. 99:2074 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    H. Weingärtner, T. Merkel, S. Kashammer, S. Schröer, and S. Wiegand, Ber. Bunsenges Phys. Chem. 97:970 (1993).CrossRefGoogle Scholar
  11. 11.
    A. Oleinikova and M. Bonetti, J. Chem. Phys. 104:3111 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    M. Bonetti, A. Oleinikova, and C. Bervillier, J. Phys. Chem. B 101:2164 (1997).CrossRefGoogle Scholar
  13. 13.
    M. Bonetti, C. Bagnuls, and C. Bervillier, J. Chem. Phys. 107:550 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    D. F. Evans, A. Yamauchi, R. Roman, and E. Z. Casassa, J. Colloid Interface Sci. 88:89 (1982).CrossRefGoogle Scholar
  15. 15.
    C. Houessou, P. Guénoun, R. Gastaud, F. Perrot, and D. Beysens, Phys. Rev. A 32:1818 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    E. Gulari, B. Chu, and D. Woermann, J. Chem. Phys. 73:2480 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    M. Bonetti, P. Calmettes, and C. Bervillier, in preparation.Google Scholar
  18. 18.
    M. Bonetti and P. Calmettes, Rev. Sci. Instrum. 68:4163 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    J.-P. Cotton, in Neutron, X-ray and Light Scattering, P. Lindner and T. Zemb, eds. (Elsevier Science, B.V., Amsterdam, 1991), p. 3.Google Scholar
  20. 20.
    P. Heller, Rep. Prog. Phys. 30:371 (1967).CrossRefGoogle Scholar
  21. 21.
    M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20:665 (1968).ADSCrossRefGoogle Scholar
  22. 22.
    P. Damay, F. Leclercq, and P. Chieux, Phys. Rev. B 40:4696 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    A. J. Bray, Phys. Lett. 55A:453 (1976); Phys. Rev. B 14:1248 (1976).ADSCrossRefGoogle Scholar
  24. 24.
    J. Zinn-Justin, Euclidian Field Theory and Critical Phenomena (Clarendon, Oxford, 1989).Google Scholar
  25. 25.
    MINUIT CERN (V 94.1, Geneva) fitting routines were used (Monte Carlo minimization using Metropolis algorithm).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • M. Bonetti
    • 1
  • P. Calmettes
    • 2
  1. 1.Service de Physique de l’Etat Condensé, C.E.A. de SaclayCedexFrance
  2. 2.Laboratoire Léon Brillouin (C.E.A./C.N.R.S.), C.E.A. de SaclayCedexFrance

Personalised recommendations