Advertisement

International Journal of Thermophysics

, Volume 19, Issue 6, pp 1555–1566 | Cite as

Coherent Neutron Scattering from the Ionic Mixture of Ethylammonium Nitrate and Deuterated n-Octanol in the Critical Region

  • M. Bonetti
  • P. Calmettes
Article

Abstract

Neutron scattering measurements were performed on the ionic mixture of ethylammonium nitrate and deuterated n-octanol in order to get information about its microscopic structure in the vicinity of the critical point. Scattering spectra were recorded for momentum transfers q, ranging from 0.06 to 0.46 Å−1. A sample at the critical salt mole fraction X c = 0.760, was studied in its homogeneous phase at various temperatures between (T c + 0.93)°C and (T c + 24.12)°C, where T c is the critical temperature. This corresponds to reduced temperatures τ = (T− T c)/Tc, in the range 3.1 × 10−3≤τ≤8.0 × 10−2. The spectra of the coherent intensity scattered from the critical mixture are described well by the Fisher-Langer approximation in a wide range of values, ξ being the critical correlation length. However, at least one additional shorter characteristic length is needed for a proper description of the spectra over the whole range of q.

Keywords

critical-point phenomena ionic mixtures neutron scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Pitzer, Acc. Chem. Res. 13:333 (1980).Google Scholar
  2. 2.
    J. M. H. Levelt Sengers and J. A. Given, Mol. Phys. 80:88 (1993).CrossRefGoogle Scholar
  3. 3.
    M. E. Fisher, J. Stat. Phys. 75:1 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    H. Weingärtner, M. Kleemeier, S. Wiegand, and W. Schröer, J. Stat. Phys. 78:169 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    H. Weingärtner, T. Merkel, U. Maurer, J.-P. Conzen, H. Glasbrenner, and S. Käshammer, Ber. Bunsenges Phys. Chem. 95:1579 (1991).CrossRefGoogle Scholar
  6. 6.
    H. Xu, H. L. Friedman, and F. O. Raineri, J. Solut. Chem. 20:739 (1991).CrossRefGoogle Scholar
  7. 7.
    W. Kunz, P. Calmettes, and P. Turq, J. Chem. Phys. 92:2367 (1990).ADSCrossRefGoogle Scholar
  8. 8.
    W. Kunz, P. Turq, P. Calmettes, J. Barthel, and L. Klein, J. Phys. Chem. 96:2743 (1992).CrossRefGoogle Scholar
  9. 9.
    W. Kunz, P. Calmettes, T. Cartailler, and P. Turq, J. Chem. Phys. 99:2074 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    H. Weingärtner, T. Merkel, S. Kashammer, S. Schröer, and S. Wiegand, Ber. Bunsenges Phys. Chem. 97:970 (1993).CrossRefGoogle Scholar
  11. 11.
    A. Oleinikova and M. Bonetti, J. Chem. Phys. 104:3111 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    M. Bonetti, A. Oleinikova, and C. Bervillier, J. Phys. Chem. B 101:2164 (1997).CrossRefGoogle Scholar
  13. 13.
    M. Bonetti, C. Bagnuls, and C. Bervillier, J. Chem. Phys. 107:550 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    D. F. Evans, A. Yamauchi, R. Roman, and E. Z. Casassa, J. Colloid Interface Sci. 88:89 (1982).CrossRefGoogle Scholar
  15. 15.
    C. Houessou, P. Guénoun, R. Gastaud, F. Perrot, and D. Beysens, Phys. Rev. A 32:1818 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    E. Gulari, B. Chu, and D. Woermann, J. Chem. Phys. 73:2480 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    M. Bonetti, P. Calmettes, and C. Bervillier, in preparation.Google Scholar
  18. 18.
    M. Bonetti and P. Calmettes, Rev. Sci. Instrum. 68:4163 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    J.-P. Cotton, in Neutron, X-ray and Light Scattering, P. Lindner and T. Zemb, eds. (Elsevier Science, B.V., Amsterdam, 1991), p. 3.Google Scholar
  20. 20.
    P. Heller, Rep. Prog. Phys. 30:371 (1967).CrossRefGoogle Scholar
  21. 21.
    M. E. Fisher and J. S. Langer, Phys. Rev. Lett. 20:665 (1968).ADSCrossRefGoogle Scholar
  22. 22.
    P. Damay, F. Leclercq, and P. Chieux, Phys. Rev. B 40:4696 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    A. J. Bray, Phys. Lett. 55A:453 (1976); Phys. Rev. B 14:1248 (1976).ADSCrossRefGoogle Scholar
  24. 24.
    J. Zinn-Justin, Euclidian Field Theory and Critical Phenomena (Clarendon, Oxford, 1989).Google Scholar
  25. 25.
    MINUIT CERN (V 94.1, Geneva) fitting routines were used (Monte Carlo minimization using Metropolis algorithm).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • M. Bonetti
    • 1
  • P. Calmettes
    • 2
  1. 1.Service de Physique de l’Etat Condensé, C.E.A. de SaclayCedexFrance
  2. 2.Laboratoire Léon Brillouin (C.E.A./C.N.R.S.), C.E.A. de SaclayCedexFrance

Personalised recommendations