Advertisement

Journal of Endocrinological Investigation

, Volume 25, Issue 11, pp 932–937 | Cite as

Hypothalamus-pituitary-adrenal axis in central diabetes insipidus: ACTH and cortisol responsiveness to CRH administration

  • R. Pivonello
  • A. Faggiano
  • M. Filippella
  • C. Di Somma
  • M. C. De Martino
  • M. Gaccione
  • G. Lombardi
  • Annamaria Colao
Original Article

Abstract

A strong relationship has been found between arginine-vasopressin (AVP) and hypotha-lamus-pituitary-adrenal axis in humans. The aim of the current study was to evaluate baseline and CRH-stimulated ACTH and F levels in patients with central diabetes insipidus (CDI), before and after replacement therapy with desamino-D-AVP (DDAVP). Twenty-five patients with CDI, and 25 sex- and age-and BMI-matched healthy subjects entered the study. A standard CRH test (measurement of plasma ACTH and serum F before and every 15 min for 2 h after the administration of 100 μg of human CRH) was performed in all subjects. In patients with CDI, CRH test were repeated after 1 week of DDAVP at standard doses. At study entry, ACTH and F levels were significantly higher in patients with CDI than in controls either at baseline (ACTH: 45.5±4.8 vs 18.5±3.3 ng/l, p<0.05; F: 375.1±55.7 vs 146.6±19.4 μg/l, p<0.05) or after CRH test considered as a peak (ACTH: 90.8±14.4 vs 42.5±7.4 ng/l, p<0.05; F: 501.6±65.7 vs 226.3± 25.6 μg/l, p<0.05) and AUC (ACTH: 3997.0±571.7 vs 2136.0±365.8 ng/l/120 min, p<0.05; F: 31489.0 ±4299.4 vs 14854.5±1541.5 μg/l/120 min, p<0.05). In patients with CDI, 1 week of replacement with DDAVP brought down ACTH (peak: 56.9±9.3 ng/l; AUC: 2390.7±480.7 ng/l/120 min) and F (peak: 310.3±39.5 μg/l; AUC: 17555.5±2008.7 μg/l/120 min) responses to CRH to normal but did not sig-nificantly modify baseline hormone levels (ACTH: 29.6±3.6 ng/l; F: 239.0±32.3 μg/l). In conclusion, CDI is associated to increased baseline ACTH and F levels and increased responsiveness of ACTH and F to CRH administration. In addition, replacement treatment with DDAVP normalized CRH-induced but not baseline ACTH and F secretion.

Key-words

Corticotropin-releasing hormone corticotropin glucocorti-coids arginine vasopressin diabetes insipidus pituitary adrenal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gwinup G. Test for pituitary function using vasopressin. Lancet 1965, 2: 572–573.PubMedCrossRefGoogle Scholar
  2. 2.
    Gwinup G. Studies on the mechanism of vasopressin-in-duced steroid secretion in man. Metabolism 1965, 14: 1282–1286.PubMedCrossRefGoogle Scholar
  3. 3.
    Gwinup G., Steinberg T., King C.G., Vernikos-Danellis J. Vasopressin-induced ACTH secretion in man. J. Clin. Endocrinol. Metab. 1967, 27: 927–930.PubMedCrossRefGoogle Scholar
  4. 4.
    Gillies G.E., Linton E.A., Lowry P.J. Corticotropin releasing activity of new CRF is potentiated several times by vasopressin. Nature 1982, 299: 355–357.PubMedCrossRefGoogle Scholar
  5. 5.
    DeBold C.R., Sheldon W.R., DeCherney G.S. et al. Arginine vasopressin potentiates adrenocorticotropin release induced by ovine corticotropin-releasing factor. J. Clin. Invest. 1984, 73: 533–538.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Lamberts S.W.J., Verleun T., Oosterom R., De Jong F., Hackeng W.H.L. Corticotropin-releasing factor (ovine) and vasopressin exert a synergistic effect on adrenocorticotropin release in man. J. Clin. Endocrinol. Metab. 1984, 58: 298–303.PubMedCrossRefGoogle Scholar
  7. 7.
    Oelkers W. Hyponatriemia and inappropriate secretion of vasopressin (antidiuretic hormone) in patients with hypopituitarism. N. Engl. J. Med. 1989, 321: 492–496.PubMedCrossRefGoogle Scholar
  8. 8.
    Wakui H., Nishinari T., Nishimura S., Endo Y., Nakamoto Y., Miura A.B. Inappropriate secretion of antidiuretic hormone in isolated adrenocorticotropin deficiency. Am. J. Med. Sci. 1991, 301: 319–321.PubMedCrossRefGoogle Scholar
  9. 9.
    Wittert G.A., Crock P.A., Donald R.A. et al. Arginine va-sopressin in Cushing’s disease. Lancet 1990, 335: 991–994.PubMedCrossRefGoogle Scholar
  10. 10.
    Nussey S.S., Page S.R., Peterson D.B. et al. Corticotropin releasing hormone (CRH 1-41) stimulates the secretion of adrenocorticotrophin, vasopressin and oxytocin but not adrenocorticotrophin precursors: evidence from pet-rosal sinus sampling in man. Clin. Endocrinol. 1991, 34: 51–56.CrossRefGoogle Scholar
  11. 11.
    Colao A., Ferone D., Di Sarno A. et al. Vasopressin levels in Cushing’s disease: inferior petrosal sinus assay, response to corticotrophin-releasing hormone and comparison with patients without Cushing’s disease. Clin. Endocrinol. 1996, 45: 157–166.CrossRefGoogle Scholar
  12. 12.
    Colao A., Pivonello R., Ferone D. et al. Effect of corti-cotropin-releasing hormone on arginine vasopressin and atrial natriuretic factor in patients with Cushing’s disease. Clin. Endocrinol. 1998, 49: 77–84.CrossRefGoogle Scholar
  13. 13.
    Pivonello R., Colao A., Di Somma C. et al. Impairment of bone status in patients with central diabetes insipidus. J. Clin. Endocrinol. Metab. 1998, 83: 2275–2280.PubMedGoogle Scholar
  14. 14.
    Pivonello R., Faggiano A., Di Somma C. et al. Effect of short-term treatment with alendronate on bone density and bone markers in patients with central diabetes in-sipidus. J. Clin. Endocrinol. Metab. 1999, 84: 2349–2352.PubMedCrossRefGoogle Scholar
  15. 15.
    Pivonello R., Faggiano A., Arrichiello P. et al. Central diabetes insipidus and heart: effect of acute arginine vaso-pressin deficiency and replacement treatment with desmo-pressin on cardiac performance. Clin. Endocrinol. 2001, 54: 97–106.CrossRefGoogle Scholar
  16. 16.
    Mazza E., Goffi S., Barchi P. et al. Enhanced adrenocorti-cotropic hormone and cortisol responses to corticotrophin-releasing hormone in central idiopathic diabetes insipidus. Eur. J. Endocrinol. 1994, 130: 121–124.PubMedCrossRefGoogle Scholar
  17. 17.
    Elias L.L.K., Antunes-Rodrigues J., Elias P.C.L., Moreira A.C. Effect of plasma osmolality on pituitary-adrenal responses to corticotropin-releasing hormone and atrial natriuretic peptide changes in central diabetes insipidus. J. Clin. Endocrinol. Metab. 1997, 82: 1243–1247.PubMedGoogle Scholar
  18. 18.
    Carraro A., Giusti M., Porcella P., Sessarego P., Giordano G. Differing responses of cortisol to oCRF during endonasal and oral treatment with DDAVP. Eur. J. Clin. Invest. 1994, 24: 459–462.PubMedCrossRefGoogle Scholar
  19. 19.
    Zacharieva S., Andreeva M., Orbetzova M. et al. Effects of corticotropin-releasing hormone on ACTH, cortisol and 13, 14-dihydro-15-keto prostaglandin E2 in patients with diabetes insipidus before and after captopril treatment. Prostaglandins Leukot. Essent. Fatty Acids 1996, 54: 433–437.CrossRefGoogle Scholar
  20. 20.
    Robertson G.L. Differential diagnosis of polyuria. Annu. Rev. Med. 1988, 39: 425–442.PubMedCrossRefGoogle Scholar
  21. 21.
    Zerbe R.I., Robertson G.L. A comparison of plasma vaso-pressin measurements with standard indirect test in the differential diagnosis of polyuria. N. Engl. J. Med. 1981, 305: 1539–1549.PubMedCrossRefGoogle Scholar
  22. 22.
    Blotner H. Primary and idiopathic diabetes insipidus: a system disease. Metabolism 1958, 7: 191–200.PubMedGoogle Scholar
  23. 23.
    Recht L.D., Hoffman D.L., Haldar J., Silverman A.J., Zimmerman E. Vasopressin concentrations in hypophyseal portal plasma: insignificant reduction following removal of the posterior pituitary gland. Neuroendocrinology 1981, 33: 88–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Lechan R.M. Neuroendocrinology of pituitary hormone regulation. Endocrinol. Metab. Clin. North Am. 1987, 16: 475–501.PubMedGoogle Scholar
  25. 25.
    Owens M.J., Nemeroff C.B. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol. Rev. 1991, 43: 425–473.PubMedGoogle Scholar
  26. 26.
    Orth D.N. Corticotropin-releasing hormone in humans. Endocr. Rev. 1992, 13: 164–191.PubMedGoogle Scholar
  27. 27.
    Antaraki A., Rangou D., Chlouverakis C. The renin-aldos-terone axis in patients with diabetes insipidus. Clin. Endocrinol. 1994, 40: 505–510.CrossRefGoogle Scholar
  28. 28.
    Spinedi E., Negro-Vilar A. Angiotensin II and ACTH release: site of action and potency relative to corticotropin releasing factor and vasopressin. Neuroendocrinology 1983, 37: 446–453.PubMedCrossRefGoogle Scholar
  29. 29.
    Singh A., Petrides J.S., Gold P.W., Chrousos G.P., Deuster P.A. Differential hypothalamic-pituitary-adrenal axis reactivity to psychological and physical stress. J. Clin. Endocrinol. Metab. 1999, 84: 1944–1948.PubMedGoogle Scholar
  30. 30.
    Holmes M.C., Catt K.J., Aguilera G. Involvement of vaso-pressin in the down-regulation of pituitary corticotropin-releasing factor receptors after adrenalectomy. Endocrinology 1987, 121: 2093–2098.PubMedCrossRefGoogle Scholar
  31. 31.
    Kopin I.J. Definition of stress and sympathetic neuronal responses. Ann. N.Y. Acad. Sci. 1995, 771: 19–30.PubMedCrossRefGoogle Scholar
  32. 32.
    Kline R.L., Patel K.L., Mercer P.F. Enhanced noradrenegic activity in the kidney of Brattleboro rats with diabetes insipidus. Am. J. Physiol. 1986, 250: R567–R572.PubMedGoogle Scholar
  33. 33.
    Axelrod J., Reisine T.D. Stress hormones: their interaction and regulation. Science 1984, 224: 452–459.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2002

Authors and Affiliations

  • R. Pivonello
    • 1
  • A. Faggiano
    • 1
  • M. Filippella
    • 1
  • C. Di Somma
    • 1
  • M. C. De Martino
    • 1
  • M. Gaccione
    • 1
  • G. Lombardi
    • 1
  • Annamaria Colao
    • 1
  1. 1.Dipartimento di Oncologia e Endocrinologia Molecolare e Clinica“Federico II” Università di NapoliNapoliItalia

Personalised recommendations