Skip to main content
Log in

Activity of GH/IGF-I axis in trauma and septic patients during artificial nutrition: Different behavior patterns?

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The aim of this study was to compare several parameters of GH/IGF-I axis activity in septic and trauma patients during Intensive Care Unit (ICU) stay. To this goal, 13 patients with sepsis (SEP) and 16 with trauma (TRA) were studied. Thirty-three adult subjects (AS) were studied as controls. Serum IGF-I and -II, IGFBP-1, -2 and -3, GH and GHBP levels were studied on day 1, 3, 5 and 7 after ICU admission, during comparable artificial nutrition in SEP and TRA and basally in AS. In 5 patients with SEP and 6 with TRA, the GH response to GHRH was evaluated on day 3. On ICU day 1, IGF-I and -II and IGFBP-3 in SEP were lower (p<0.05) than in TRA which, in turn, were lower (p<0.01) than in AS. IGF-I increased (p<0.05) both in SEP and TRA, but, on ICU day 7, those in SEP persisted lower than in TRA, which became similar to those in AS. IGF-II levels increased (p<0.05) in SEP only, persisting lower (p<0.05) than in TRA. On ICU day 1, GH in SEP and TRA were similar and did not vary until day 7, overlapping those in AS. The GH response to GHRH in SEP and TRA was similar and lower (p<0.01) than in AS. These findings indicate that IGF-I activity is impaired more in septic than in trauma patients. Reduced IGF-I activity probably reflects peripheral GH resistance though basal and GHRH-induced GH levels were not increased in these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilmore D.W. Catabolic illness. N. Engl. J. Med. 1991, 325: 695–702.

    Article  CAS  PubMed  Google Scholar 

  2. Jenkins R.C., Ross R.J.M. The endocrinology of the critically ill. Curr. Opin. Endocrinol. 1996, 3: 138–145.

    Article  Google Scholar 

  3. Van den Berghe G., de Zegher F. Anterior pituitary function during critical illness and dopamine treatment. Crit. Care Med. 1996, 24: 1580–1590.

    Article  PubMed  Google Scholar 

  4. Van den Berghe G., de Zegher F., Lauwers P., Veldhuis J.D. Growth hormone secretion in critical illness: effect of dopamine. J. Clin. Endocrinol. Metab. 1994, 79: 1141–1146.

    PubMed  Google Scholar 

  5. Ross R.J.M., Chew S.L. Acquired growth hormone resistance. Eur. J. Endocrinol. 1995, 132: 655–660.

    Article  CAS  PubMed  Google Scholar 

  6. Faber J., Kirkegaard C., Rasmussen B. et al. Pituitary-thyroid axis in critical illness. J. Clin. Endocrinol. Metab. 1987, 65: 315–320.

    Article  CAS  PubMed  Google Scholar 

  7. Thissen J.P., Ketesleger J.M., Underwood L.E. Nutritional regulation of Insulin-like growth factors. End. Rev. 1994, 15: 80–85.

    CAS  Google Scholar 

  8. Ketelslegers J.M., Maiter D., Maes M., Underwood L.E., Thissen J.P. Nutritional regulation of the growth hormone and insulin-like growth factor-binding proteins. Horm. Res. 1996, 45: 252–257.

    Article  CAS  PubMed  Google Scholar 

  9. Abribat T., Brazeau P., Davignon I., Garrel D.R. Insulin-like growth factor-I blood levels in severely burned patients: effects of time post injury, age of patient and severity of burn. Clin. Endocrinol. (Oxf.) 1993, 39: 583–589.

    Article  CAS  Google Scholar 

  10. Dahn M.S., Lange M.P., Jacobs L.A. Insulin-like growth factor-I production is inhibited in human sepsis. Arch. Surg. 1988, 123: 1409–1414.

    Article  CAS  PubMed  Google Scholar 

  11. Cotterill A.M., Mendel P., Holly J.P.M., et al. The differential regulation of the circulating levels of the insulin-like growth factors and their binding proteins (IGFBP) 1, 2 and 3 after elective abdominal surgery. Clin. Endocrinol. (Oxf.) 1996, 44: 91–101.

    Article  CAS  Google Scholar 

  12. Timmins A.C., Cotterill A.M., Cwylan Hughes S.C., et al. Critical illness is associated with low circulating concentrations of insulin-like growth factors-I and -II, alterations in insulin-like growth factor binding proteins, and induction of an insulin-like growth factor binding protein 3 protease. Crit. Care Med. 1996, 24: 1460–1466.

    Article  CAS  PubMed  Google Scholar 

  13. Gianotti L., Broglio F., Aimaretti G., et al. Low IGF-I levels are often uncoupled with elevated GH levels in catabolic conditions. J. Endocrinol. Invest. 1998, 21: 115–121.

    CAS  PubMed  Google Scholar 

  14. Belcher H.J.C.R., Mercer D., Judkins K.C., et al. Biosynthetic human growth hormone in burned patients: a pilot study. Burns 1989, 15: 99–107.

    Article  CAS  PubMed  Google Scholar 

  15. Fleming R.Y.D., Rutan R.L., Jahoor F., et al. Effect of recombinant human growth hormone on catabolic hormones and free fatty acids following thermal injury. J. Trauma 1992, 32: 698–703.

    Article  CAS  PubMed  Google Scholar 

  16. Voerman H.J., Strack van Schijndel R.J.M., Groeneveld A.B.J., et al. Effects of recombinant human growth hormone in patients with severe sepsis. Ann. Surg. 1992, 216: 648–651.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ross R.J.M., Miell J., Freeman E., et al. Critically ill patients have high basal growth hormone levels with attenuated oscillatory activity associated with low levels of insulin-like growth factor-I. Clin. Endocrinol. (Oxf.) 1991, 35: 47–54.

    Article  CAS  Google Scholar 

  18. Jeevanandan M., Holaday N.J., Petersen S.R. Plasma levels of insulin-like growth factor binding protein-3 in acute trauma patients. Metabolism 1995, 44: 1205–1208.

    Article  Google Scholar 

  19. Ziegler T.R., Romeau J.L., Young L.S., et al. Recombinant human growth hormone enhances the metabolic efficacy of parenteral nutrition: a double-blind, randomized controlled study. J. Clin. Endocrinol. Metab. 1992, 74: 865–873.

    Article  CAS  PubMed  Google Scholar 

  20. Byrne T.A., Morissey T.B., Gatzen C., et al. Anabolic therapy with growth hormone accelerates protein gain in surgical patients requiring nutritional rehabilitation. Ann. Surg. 1993, 218: 400–418.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mulligan K., Grunfeld C., Hellerstein M.K., Neese R.A., Schambelan M. Anabolic effects of recombinant human growth hormone in patients with wasting associated with human immunodeficiency virus infection. J. Clin. Endocrinol. Metab. 1993, 77: 956–962.

    CAS  PubMed  Google Scholar 

  22. Vara-Thorbeck R., Ruiz-Requena E., Guerrero-Fernandez J.A. Effects of human growth hormone on the catabolic state after surgical trauma. Horm. Res. 1996, 45: 55–60.

    Article  CAS  PubMed  Google Scholar 

  23. Frost R.A., Fuhrer J., Steigbigel R., et al. Wasting in the acquired immune deficiency syndrome is associated with multiple defects in the serum insulin-like growth factor system. Clin. Endocrinol. (Oxf.) 1996, 44: 501–514.

    Article  CAS  Google Scholar 

  24. Nygren J., Sammann M., Malm M., et al. Disturbed anabolic hormonal patterns in burned patients: the relation to glucagon. Clin. Endocrinol. 1995, 43: 491–500.

    Article  CAS  Google Scholar 

  25. Jeffries M.K., Lee Vance M. Growth hormone and cortisol secretion in patients with burn injury. J. Burn Care Rehabil. 1992, 13: 391–395.

    Article  CAS  PubMed  Google Scholar 

  26. Voerman H.J., Groeneveld A.B.J., de Boer H., et al. Time course and variability of the endocrine and metabolic response to severe sepsis. Surgery 1993, 114: 951–959.

    CAS  PubMed  Google Scholar 

  27. Melarvie S., Jeevanandam M., Holaday N.J., Petersen S.R. Pulsatile nature of growth hormone levels in critically ill trauma victims. Surgery 1995, 117: 402–408.

    Article  CAS  PubMed  Google Scholar 

  28. Heijligenberg R., Sauerwein H.P., Brabant G., et al. Circadian growth hormone secretion in asymptomatic human immune deficiency virus infection and acquired immunodeficiency syndrome. J. Clin. Endocrinol. Metab. 1996, 81: 4028–4032.

    CAS  PubMed  Google Scholar 

  29. Casanueva F.F., Villanueva L., Dieguez C., et al. Free fatty acids block growth hormone (GH) releasing hormonestimulated GH secretion in man directly at the pituitary. J. Clin. Endocrinol. Metab. 1987, 65: 634–642.

    Article  CAS  PubMed  Google Scholar 

  30. Casanueva F.F. Physiology of growth hormone secretion and action. In: Melmed S. (Ed.), Acromegaly Endocrinology and Metabolism. Clin. North Am. 1992, 21: 483–517.

    CAS  Google Scholar 

  31. Ghigo E. Neurotransmitter control of growth hormone secretion. In: De la Cruz L.F. (Ed.), Regulation of growth hormone and somatic growth. Elsevier Science Publishers, Amsterdam, 1992, pp. 103–136.

    Google Scholar 

  32. Ghigo E., Arvat E., Muccioli G., Camanni F. Growth hormone (GH)-releasing peptides. Eur. J. Endocrinol. 1997, 136: 445–460.

    Article  CAS  PubMed  Google Scholar 

  33. Van den Berghe G., de Zegher F., Bowers C.Y., et al. Pituitary responsiveness to GH-releasing peptide-2 and thyrotropin-releasing hormone in critical illness. Clin. Endocrinol. (Oxf.) 1996, 45: 341–351.

    Article  Google Scholar 

  34. Donaghy A., Ross R.J.M., Gimson A., et al. Growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins 1 and 3 in chronic liver disease. Hepatology 1995, 21: 680–688.

    CAS  PubMed  Google Scholar 

  35. Takala J., Keinänen O., Vaisanen P., Kari A. Measurement of gas exchange in intensive care: Laboratory and clinical validation of a new device. Crit. Care Med. 1989, 17: 1041–1047.

    Article  CAS  PubMed  Google Scholar 

  36. Jones J., Clemmons D.R. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 1995, 16: 3–34.

    CAS  PubMed  Google Scholar 

  37. Froesch E.R., Zenobi P.D., Hussain M. Metabolic and therapeutic effects of insulin-like growth factor I. Horm. Res. 1994, 42: 66–71.

    Article  CAS  PubMed  Google Scholar 

  38. Donahue S.P., Phillips L.S. Response of IGF-I to nutritional support in malnourished hospital patients: a possible indicator of short-term changes in nutritional status. Am. J. Clin. Nutr. 1989, 50: 962–969.

    CAS  PubMed  Google Scholar 

  39. Haymond M.W., Mauras N. The rationale for the use of recombinant human growth hormone and insulin-like growth factor-I for catabolic conditions in humans. Horm. Res. 1996, 46: 202–207.

    Article  CAS  PubMed  Google Scholar 

  40. Bauman G., Shaw M.A., Amburn K. Circulating growth hormone binding proteins. J. Endocrinol. Invest. 1994, 17: 67–81.

    Google Scholar 

  41. Weissman C., Kemper M., Elwyn D.H., et al. The energy expenditure of the mechanically ventilated critically ill patient. Chest 1986, 89: 254–259.

    Article  CAS  PubMed  Google Scholar 

  42. Golden M.H.N. Transport proteins as indices of protein status. Am. J. Clin. Nutr. 1982, 35: 1159–1165.

    CAS  PubMed  Google Scholar 

  43. Imura H., Fukata J., Mori T. Cytokines and endocrine function: an interaction between the immune and neuroendocrine systems. Clin. Endocrinol. (Oxf.) 1991, 35: 107–115.

    Article  CAS  Google Scholar 

  44. Blackwell T.S., Christamn J.W. Sepsis and cytokines: current status. Pr. J. Anaesth. 1996; 77: 110–117.

    CAS  Google Scholar 

  45. Ingenbleek Y., De Visscher M., De Nayer P. Measurement of prealbumin as index of protein-calorie malnutrition. Lancet 1972, II: 106–108.

    Article  Google Scholar 

  46. Ingenbleek Y., Van Den Schriech H.G., De Nayer P., De Visscher M. The role of retinol-binding protein in proteincalorie malnutrition. Metabolism 1975, 24: 633–641.

    Article  CAS  PubMed  Google Scholar 

  47. Hartman M.L., Faria A.C.S., Vance M.L. et al. Temporal structure of in vivo growth hormone secretory events in humans. Am. J. Physiol. 1991, 260: E101–E105.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ghigo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pittoni, G., Gallioli, G., Zanello, M. et al. Activity of GH/IGF-I axis in trauma and septic patients during artificial nutrition: Different behavior patterns?. J Endocrinol Invest 25, 214–223 (2002). https://doi.org/10.1007/BF03343993

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343993

Key-words

Navigation