Journal of Endocrinological Investigation

, Volume 24, Issue 1, pp 17–23 | Cite as

Congenital deficiency of 11β-hydroxysteroid dehydrogenase (apparent mineralocorticoid excess syndrome): Diagnostic value of urinary free cortisol and cortisone

  • Mario Palermo
  • G. Delitala
  • F. Mantero
  • P. M. Stewart
  • C. H. L. Shackleton
Original Article


The syndrome of apparent mineralocorticoid excess (AME) is an inherited form of hypertension. This disorder results from an inability of the enzyme 11β-hydroxysteroid dehydrogenase (11β-OHSD) to inactivate cortisol to cortisone. The diagnosis of AME is usually based on an elevated ratio of cortisol to cortisone reduced metabolites in the urine [tetrahydrocortisol plus allotetrahydrocortisol to tetrahydrocortisone (THF+alloTHF/THE)]. The principal site of “A” ring reduction is the liver, But AME arises from mutation in the gene encoding 11β-OHSD2 in the kidney. We used a gas chromatographic/mass spectrometric method to measure the urinary free cortisol (UFF) and free cortisone (UFE) in 24 patients affected by the two variants of AME [19 with the classical form (type I) and 5 with the mild form called AME type II] in order to provide a more reproducible in vivo measure of the renal enzymatic activity. Type I patients were divided into two groups: children under 12 and adults. UFF levels (μg/24 h) did not differ between under-12 controls and AME type I children (mean±SD, 9±4 and 15±12, respectively), But was significantly higher in affected adults compared to controls: (62±32 vs 29±8, p<0.01). No differences were found between adult controls and AME type II patients (29±8 and 37.0±14, respectively). UFE was undetectable in 63% of AME type I and significantly lower in AME type II (p<0.05). As a consequence UFF/UFE ratio was significantly higher in AME type I patients both in children and adults compared to controls (AME children: 5.1±2.6; normal children: 0.43±0.2, p<0.01; AME type I adults: 17.7±19.6; normal adults: 0.54±0.3 p<0.01). For AME type II, Where UFE was detectable in every case, the UFF/UFE ratio was significantly higher than adult controls (2.75±1.5 vs 0.54±0.3, p<0.01). In conclusion, Our study indicates that UFE and UFF/UFE ratio are sensitive markers of 11β-OHSD2, Directly reflecting the activity of the renal isozyme and readily identifying patients with AME. The presence of an altered UFF/UFE ratio in both types of AME, Although with different degree of severity, Calls for re-evaluation and the classification of AME as a single disorder.


Apparent mineralocorticoid syndrome hypertension cortisol cortisone gas-chromatography/mass spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shimojo M., Stewart P.M. Apparent mineralocorticoid excess syndrome. J. Endocrinol. Invest. 1995, 51: 518–532.CrossRefGoogle Scholar
  2. 2.
    Shackleton C.H.L. Stewart P.M. The hypertension of apparent mineralocorticoid excess (AME) syndrome. In: Biglieri E.G, Melby J.C. (Eds.), Endocrine hypertension. Raven Press, New York, 1990, pp. 155–173.Google Scholar
  3. 3.
    Stewart P.M., Wallace A.M., Valentino R., Burt D., Shackleton C.H.L., Edwards C.R.W. Mineralocorticoid activity of licorice: 11beta-hydroxysteroid dehydrogenase comes of age. Lancet ii: 1987, 2: 821–824.CrossRefGoogle Scholar
  4. 4.
    Edwards C.R.W., Walker B.R., Benediktsson R., Seckl J.R. Congenital and acquired syndrome of apparent mineralocorticoid excess. J. Steroid Biochem. Mol. Biol. 1983, 45: 1–5.CrossRefGoogle Scholar
  5. 5.
    Arriza J.L., Weinberger C., Cerelli G., Gasler T.M., Handelin B.L.J., Housman D.E., Evans R.M. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 1987, 237: 268–274.PubMedCrossRefGoogle Scholar
  6. 6.
    Stewart P.M., Mason J.I. Cortisol to cortisone: glucocorticoid to mineralocorticoid. Steroids 1995, 60: 143–146.PubMedCrossRefGoogle Scholar
  7. 7.
    Ulick S., Chan C.K., Rao K.N., Mantero F. A new form of the syndrome of apparent mineralocorticoid excess. J. Steroid Biochem. 1989, 32: 209–212.PubMedCrossRefGoogle Scholar
  8. 8.
    Moore C.C.D., Mellon S.H., Murai J., Siiteri P.K., Miller W.L. Structure and function of the hepatic form of 11β- hydroxysteroid dehydrogenase in the squirrel monkey, An animal model of glucocorticoid resistance. Endocrinology 1993, 133: 368–375.PubMedGoogle Scholar
  9. 9.
    Stewart P.M. 11β-hydroxysteroid dehydrogenase: implications for clinical medicine. Clin. Endocrinol. 1996, 44: 483–499.CrossRefGoogle Scholar
  10. 10.
    Stewart P.M., Boulton A., Kumar S., Clark P.M., Shackleton C.H.L. Cortisol metabolism in human obesity: impaired cortisone-cortisol conversion in subjects with central obesity. J. Clin. Endocrinol. Metab. 1999, 84: 1022–1027.PubMedGoogle Scholar
  11. 11.
    Kenouch S., Alfaidy N., Bonvalet J.P., Farman N. Expression of 11β-hydroxysteroid dehydrogenase along the nephron of mammals and humans. Steroids 1994, 59: 100–104.PubMedCrossRefGoogle Scholar
  12. 12.
    Krozowski Z.S., Maguire J.A., Stein-Oakley A.N., Dowling J., Smith R.E., Andrews R.K. Immunohistochemical localization of 11β-hydroxysteroid dehydrogenase type 2 enzyme in human kidney and placenta. J. Clin. Endocrinol. Metab. 1995, 80: 2203–2209.PubMedGoogle Scholar
  13. 13.
    Brown R.W., Chapman K.E., Edwards C.R.W., Seckl J.R. Human placental 11β-hydroxysteroid dehydrogenase: evidence for and partial purification of a distinct NAD-dependent isoform. Endocrinology 1993, 132: 2614–2621.PubMedGoogle Scholar
  14. 14.
    Mune T., Rogerson F.M., Nikkila H., Agarwal A.K., White P.C. Human hypertension caused by mutation in the kidney isozyme of 11β-hydroxysteroid dehydrogenase. Nat. Genet. 1995, 10: 394–399.PubMedCrossRefGoogle Scholar
  15. 15.
    Li A., Tedde R., Krozowski Z.S., Pala A., Li K.X., Shackleton C.H.L., Mantero F., Palermo M., Stewart P.M. Molecular basis for hypertension in the “type 2 variant” of apparent mineralocorticoid excess. Am. J. Hum. Genet. 1998, 63: 370–379.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Ulick S., Tedde R., Mantero F. Pathogenesis of type 2 variant of the syndrome of apparent mineralocorticoid excess. J. Clin. Endocrinol. Matab. 1990, 70: 200–206.CrossRefGoogle Scholar
  17. 17.
    Mantero F., Tedde R., Opocher G., Dessì Fulgheri P., Arnaldi P., Ulick S. Apparent mineralocorticoid excess type 2. Steroids 1994, 59: 80–83.PubMedCrossRefGoogle Scholar
  18. 18.
    Shackleton C.H.L. Mass spectrometry in the diagnosis of steroid related disorder and in hypertension research. J. Steroid Biochem. Mol. Biol. 1993, 45: 127–140.PubMedCrossRefGoogle Scholar
  19. 19.
    Palermo M., Gomez-Sanchez C., Roitman E. and Shackleton C.H.L. Quantitation of cortisol 3-oxo-4-ene steroids in urine using gas chromatography/mass. Spectrometry with stable isotope-labeled internal standard. Steroids 1996, 61: 583–589.PubMedCrossRefGoogle Scholar
  20. 20.
    Ulick S., Tedde R., Wang J.Z. Defective ring A reduction of cortisol as the major metabolic error in the syndrome of apparent mineralocorticoid excess. J. Clin. Endocrinol. Metab. 1992, 74: 593–599.PubMedGoogle Scholar
  21. 21.
    Mantero F., Palermo M., Petrelli M.D., Tedde R., Stewart P.M., Shackleton C.H.L. Apparent minaralocorticoid excess: type I and type II Steroids 1996, 61: 193–196.PubMedCrossRefGoogle Scholar
  22. 22.
    Palermo M., Cossu M., Shackleton C.H.L. Cure of apparent mineralocorticoid excess by kidney transplantation. N. Engl. J. Med. 1998, 339: 1787–1788.PubMedCrossRefGoogle Scholar
  23. 23.
    Nikkila H., Tannin G.M., New M.I., Taylor N.F., Kalaitzoglou G., Monder C., White P.C. Defect in the HSD 11 gene encoding 11β-hydroxysteroid dehydrogenase are not found in patients with apparent mineralocorticoid excess or 11-oxo reductase deficiency. J. Clin. Endocrinol. Metab. 1993, 77: 687–691.PubMedGoogle Scholar
  24. 24.
    Wilson R.C., Krozowski Z.S., Li K., Obeyesekere V.R., Razzaghy-Azar M., Harbison M.D., Wej J.Q., Shackleton C.H.L., Funder J.W., New M.I. A mutation in HSD11β2 gene in a family with apparent mineralocorticoid excess. J. Clin. Endocrinol. Metab. 1995, 80: 2263–2266.PubMedGoogle Scholar
  25. 25.
    Wilson R.C., Dave-Sharma S., Wei J.Q., Obeyesekere V.R., Li K., Ferrari P., Krozowsky Z.S., Shackleton C.H.L., Bradlow L., Wiens T., New M.I. A genetic defect resulting in mild low-renin hypertension. Proc. Natl. Acad. Sci. USA 1998, 18; 95: 10200–10205.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Shackleton C.H.L., Artega J.R.E., Lopez J.M., Winter J.S.D. Congenital 11β-hydroxysteroid dehydrogenase deficiency associated with juvenile hypertension: corticosteroid metabolite profile of four patients and their families. Clin. Endocrinol. 1985, 22: 701–712.CrossRefGoogle Scholar
  27. 27.
    Nunez B.S., Rogerson F.M., Mune T., Igarashi Y., Nakagawa Y., Phillipov G., Moudgil A., Travis L.B., Palermo M., Shackleton C.H.L., White P.C. Mutans 11beta-hydroxysteroid dehydrogenase (11-HSD2) with partial activity: improved correlations between genotype and biochemical phenotype in apparent mineralocorticoid excess. Hypertension 1999, 34: 638–642.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2001

Authors and Affiliations

  • Mario Palermo
    • 1
  • G. Delitala
    • 1
  • F. Mantero
    • 2
  • P. M. Stewart
    • 3
  • C. H. L. Shackleton
    • 4
  1. 1.University of SassariSassariItaly
  2. 2.Clinic of EndocrinologyUniversity of AnconaAnconaItaly
  3. 3.Department of MedicineUniversity of BirminghamUK
  4. 4.Children’s HospitalResearch InstituteOaklandUSA

Personalised recommendations