Journal of Endocrinological Investigation

, Volume 23, Issue 5, pp 287–294 | Cite as

Comparative analysis of plasma 17-hydroxyprogesterone and cortisol responses to ACTH in patients with various adrenal tumors before and after unilateral adrenalectomy

  • Miklós Tóth
  • K. Rácz
  • V. Adleff
  • I. Varga
  • L. Fütö
  • C. Jakab
  • K. Karlinger
  • R. Kiss
  • E. Gláz
Original Article


Patients with non-hyperfunctioning adrenal adenomas often have an increased plasma 17-hydroxyprogesterone response to ACTH stimulation. The effects of adrenal surgery on this abnormality have rarely been investigated. One hundred and sixty-one patients with unilateral adrenal tumors (non-hyperfunctioning adenomas, 78; cortisol-producing adenomas, 8; aldosteroneproducing adenomas, 37; adrenal cysts, 12; pheochromocytomas, 26) were studied. Patients before and after adrenal surgery as well as 60 healthy subjects underwent an ACTH stimulation test using 2 mg synthetic ACTH1-24 (Cortrosyn Depot, Organon). Basal and ACTH-stimulated plasma 17- hydroxyprogesterone and cortisol concentrations are reported. Before adrenal surgery, the basal plasma 17-hydroxyprogesterone concentrations were normal in patients with all types of tumors. However, the ACTH-stimulated plasma 17-hydroxyprogesterone levels were abnormally increased in 53% and 31% of patients with non-hyperfunctioning adenomas and aldosterone-producing adenomas, respectively. In addition, a few patients with adrenal cysts and pheochromocytomas also showed an increased ACTH-stimulated 17- hydroxyprogesterone response. After unilateral adrenalectomy, this hormonal abnormality disappeared in most, although not all patients with adrenal tumors. In patients with non-hyperfunctioning adrenal tumors, ACTH-stimulated plasma 17-hydroxyprogesterone and cortisol concentrations significantly correlated with the size of the tumors. These results firmly indicate that the tumoral mass itself may be responsible for the increased plasma 17-hydroxyprogesterone and cortisol responses after ACTH stimulation in patients with non-hyperfunctioning and hyperfunctioning adrenal adenomas.


Adrenal adrenal tumors 17-hydroxyprogesterone response to ACTH 21-hydroxylase Cushing’s syndrome Conn’s syndrome pheochromocytoma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jockenhövel F., Kuck W., Hauffa B., Reinhardt W., Benker G., Lederbogen S., Olbricht T., Reinwein D. Conservative and surgical management of incidentally discovered adrenal tumors (incidentalomas). Endocrinol. Invest. 1992, 15: 331–337.Google Scholar
  2. 2.
    Turton D.B., O’Brian J.T., Shakir K.M.M. Incidental adrenal nodules: Association with exaggerated 17-hydroxyprogesterone response to adrenocorticotropic hormone. Endocrinol. Invest. 1992, 15: 789–796.Google Scholar
  3. 3.
    Seppel T., Schlaghecke R. Augmented 17a-hydroxyprogesterone response to ACTH stimulation as evidence of decreased 21- hydroxylase activity in patients with incidentally discovered adrenal tumours (“incidentalomas”). Clin. Endocrinol. (Oxf.) 1994, 41: 445–451.CrossRefGoogle Scholar
  4. 4.
    Ambrosi B., Peverelli S., Passini E., Re T., Ferrario R., Colombo P., Sartorio A., Faglia G. Abnormalities of endocrine function in patients with clinically “silent” adrenal masses. Eur. J. Endocrinol. 1995, 132: 422–428.PubMedCrossRefGoogle Scholar
  5. 5.
    Del Monte P., Bernasconi D., Bertolazzi L., Meozzi M., Badaracco B., Torre R., Marugo M. Increased 17a-hydroxyprogesterone response to ACTH in silent adrenal adenoma: cause or effect? Clin. Endocrinol. 1995, 42: 273–277.CrossRefGoogle Scholar
  6. 6.
    Terzolo M., Osella G., Ali A., Borretta G., Magro GP., Termine A., Paccotti P., Angeli A. Different patterns of steroid secretion in patients with adrenal incidentaloma. J. Clin. Endocrinol. Metab. 1996, 81: 740–744.PubMedGoogle Scholar
  7. 7.
    Bernini G.P., Brogi G., Vivaldi M.S., Argenio G.F., Sgro M., Moretti A., Salvetti A. 17-hydroxyprogesterone response to ACTH in bilateral and monolateral adrenal incidentalomas. J. Endocrinol. Invest. 1996, 19: 745–752.PubMedGoogle Scholar
  8. 8.
    Reincke M., Peter M., Sippell W.G., Allolio B. Impairment of 11a-hydroxylase but not 21-hydroxylase in adrenal “incidentalomas”. Eur. J. Endocrinol. 1997, 136: 196–200.PubMedCrossRefGoogle Scholar
  9. 9.
    Bondanelli M., Campo M., Trasforini G., Ambrosio M.R., Zatelli M.C., Franceschetti P., Valentini A., Pansini R., degli Uberti E.C. Evaluation of hormonal function in a series of incidentally discovered adrenal masses. Metabolism 1997, 46: 107–113.PubMedCrossRefGoogle Scholar
  10. 10.
    Mantero F., Masini A.M., Opocher G., Giovagnetti M., Arnaldi G. Adrenal incidentaloma: an overview of hormonal data from the National Italian Study Group. Horm. Res. 1997, 47: 284–289.PubMedCrossRefGoogle Scholar
  11. 11.
    Sartorio A., Conti A., Ferrero S., Giambona S., Re T., Passini E., Ambrosi B. Evaluation of markers of bone and collagen turnover in patients with active and preclinical Cushing’s syndrome and in patients with adrenal incidentaloma. Eur. J. Endocrinol. 1998, 138: 146–152.PubMedCrossRefGoogle Scholar
  12. 12.
    Tóth M., Rácz K., Gláz E. Increased plasma 17-hydroxy-progesterone response to ACTH in patients with non-hyperfunctioning adrenal adenomas is not due to a deficiency in 21- hydroxylase activity (Letter). J. Clin. Endocrinol. Metab. 1998, 83: 3756–3757.PubMedCrossRefGoogle Scholar
  13. 13.
    Hensen J., Buhl M., Bähr V., Oelkers W. Endocrine activity of the “silent” adrenocortical adenoma is uncovered by response to corticotropinreleasing hormone. Klin. Wochenschr. 1990, 68: 608–614.PubMedCrossRefGoogle Scholar
  14. 14.
    Tóth M., Rácz K., Varga I., Adleff V., Jakab Cs., Fütö L., Kiss R., Gláz E. Plasma dehydroepiandrosterone sulfate levels in patients with hyperfunctioning and non-hyperfunctioning adrenal tumors before and after adrenal surgery. Eur. J. Endocrinol. 1997, 136: 290–295.PubMedCrossRefGoogle Scholar
  15. 15.
    Vecsei P., Onyechi J., Hornung J., Dietz R., Mast G., Hobler H. Use of corticosteroid antibodies for the study of corticosteroid biosynthesis in vitro. J. Steroid Biochem. 1975, 6: 383–387.PubMedCrossRefGoogle Scholar
  16. 16.
    Varga I., Rácz K., Kiss R., Fütö L., Tóth M., Sergev O., Gláz E. Direct inhibitory effect of etomidate on corticosteroid secretion in human pathological adrenocortical cells. Steroids 1993, 58: 64–68.PubMedCrossRefGoogle Scholar
  17. 17.
    Shimshi M., Ross F., Goodman A., Gabrilove J.L. Virilizing adrenocortical tumor superimposed on congenital adrenal hyperplasia. Am. J. Med. 1992, 93: 338–342.PubMedCrossRefGoogle Scholar
  18. 18.
    Bevan J.S., Rees A. Dexamethasone-suppressible adrenal tumour in untreated 21-hydroxylase deficiency. Clin. Endocrinol. (Oxf.) 1996, 44: 733–737.CrossRefGoogle Scholar
  19. 19.
    Nagasaka S., Kubota K., Motegi T., Hayashi E., Ohta M., Takahashi T., Iwasaki Y., Koike M., Nishikawa T., Sasano H., Murakami T. A case of silent 21-hydroxylase deficiency with persistent adrenal insufficiency after removal of an adrenal incidentaloma. Clin. Endocrinol. 1996, 44: 111–116.CrossRefGoogle Scholar
  20. 20.
    Ravichandran R., Lafferty F., McGinnis M.J., Taylor H.C. Congenital adrenal hyperplasia presenting as massive adrenal incidentalomas in the sixth decade of life: report of two patients with 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 1996, 81: 1776–1779.PubMedGoogle Scholar
  21. 21.
    Tóth M., Rácz K., Halász Z., Gláz E. Adrenal tumor associated with silent 21-hydroxylase deficiency in a male or with a classical form of 21- hydroxylase defect in a female? Clin. Endocrinol. (Oxf.) 1996, 45: 369–370.CrossRefGoogle Scholar
  22. 22.
    Jaresch S., Kornely E., Kley H-K., Schlaghecke R. Adrenal incidentaloma and patients with homozygous or heterozygous congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 1992, 74: 685–689.PubMedGoogle Scholar
  23. 23.
    Rácz K., Pinet F., Marton T., Szende B., Gláz E., Corvol P. Expression of steroidogenic enzyme messenger ribonucleic acids and corticosteroid production in aldosterone- producing and “nonfunctioning” adrenal adenomas. J. Clin. Endocrinol. Metab. 1993, 77: 677–682.PubMedGoogle Scholar
  24. 24.
    Beuschlein F., Schulze E., Mora P., Gensheimer HP., Maser-Gluth C., Allolio B., Reincke M. Steroid 21-hydroxylase mutations and 21-hydroxylase messenger ribonucleic acid expression in human adrenocortical tumors. J. Clin. Endocrinol. Metab. 1998, 83: 2585–2588.PubMedGoogle Scholar
  25. 25.
    Gláz E., Rácz K., Varga I., Kiss R., Tóth M., Fütö L. Mineralocorticoid production of adrenal cortical adenomas. J. Steroid Biochem. 1993, 45: 57–64.CrossRefGoogle Scholar
  26. 26.
    Morioka M., Tanaka H., Ohashi Y., Jin T-X., Komatsu F., Watanabe H. The analysis of steroidogenic activity in non-hyperfunctioning adrenocortical adenoma. Endocr. Jpn. 1997, 44: 647–653.CrossRefGoogle Scholar
  27. 27.
    Suzuki H., Shibata H., Maruyama T., Ishimura Y., Saruta T. Significance of steroidogenic enzymes in the pathogenesis of hyperfunctioning and non-hyperfunctioning adrenal tumor. Steroids 1995, 60: 42–47.PubMedCrossRefGoogle Scholar
  28. 28.
    Griffing G.T., Chobainian A.V., Egdahl R., Ehlers M.E., Melby J.C. An adrenal cyst associated with 19-nor-deoxycorticosterone excess and low renin hypertension. Clin. Exp. Hypertens. (A) 1989, 11: 317–321.CrossRefGoogle Scholar
  29. 29.
    Kearney G.P., Mahoney E.M., Maher E., Harrison J.H. Functioning and nonfunctioning cysts of the adrenal cortex and medulla. Am. J. Surg. 1977, 134: 363–368.PubMedCrossRefGoogle Scholar
  30. 30.
    Bruhn T.O., Engeland W.C., Anthony E.L.P., Gann D.S., Jackson I.M.D. Corticotropin-releasing factor in the adrenal medulla. Ann. N. Y. Acad. Sci. 1987, 512: 115–128.PubMedCrossRefGoogle Scholar
  31. 31.
    Amico J.A., Clarke M.R., Watson C.G., Kim N.B., Bononi P.L., Crowley R.S., Horwitz M.J. Endothelin-1 gene expression in human pheochromocytoma. J. Lab. Clin. Med. 1993, 122: 667–672.PubMedGoogle Scholar
  32. 32.
    Bornstein S.R., Ehrhart-Bornstein M., Scherbaum W.A. Morphological and functional studies of the paracrine interaction between cortex and medulla in the adrenal gland. Microsc. Res. Tech. 1997, 36: 520–533.CrossRefGoogle Scholar
  33. 33.
    Ehrhart-Bornstein M., Bornstein S.R., Scherbaum W.A. Sympathoadrenal system and immune system in the regulation of adrenocortical function. Eur. J. Endocrinol. 1996, 135: 19–26.PubMedCrossRefGoogle Scholar
  34. 34.
    Nussdorfer G.G. Paracrine control of adrenal cortical function by medullary chromaffin cells. Pharmacol. Rev. 1996, 48: 495–530.PubMedGoogle Scholar
  35. 35.
    Inoue J., Oishi S., Naomi S., Umeda T., Sato T. Pheochromocytoma associated with adrenocortical adenoma: Case report and literature review. Endoc. Jpn. 1986, 33: 67–74.CrossRefGoogle Scholar
  36. 36.
    Chen H., Doppman J.L., Chrousos G.P., Norton J.A., Nieman L.K., Udelsman R. Adrenocorticotropic hormone-secreting pheochromocytomas: The exception to the rule. Surgery 1995, 118: 988–995.PubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 2000

Authors and Affiliations

  • Miklós Tóth
    • 1
  • K. Rácz
    • 1
  • V. Adleff
    • 1
  • I. Varga
    • 1
  • L. Fütö
    • 1
  • C. Jakab
    • 1
  • K. Karlinger
    • 2
  • R. Kiss
    • 1
  • E. Gláz
    • 1
  1. 1.Gastroenterological and Endocrinological Research Group, 2nd Department of MedicineSemmelweis University Medical SchoolBudapestHungary
  2. 2.Department of RadiologySemmelweis University Medical SchoolBudapestHungary

Personalised recommendations