Journal of Endocrinological Investigation

, Volume 22, Issue 10, pp 781–789 | Cite as

Ras mutations are uncommon in sporadic thyroid cancer in children and young adults

  • C. Fenton
  • J. Anderson
  • Y. Lukes
  • C. A. Welch Dinauer
  • R. M. Tuttle
  • G. L. Francis
Original Article


Mutations in the ras genes (H-ras, K-ras, and N-ras) occur in 10–15% of all human cancers, and commonly arise from single base substitutions at codons 12, 13, or 61. Although ras mutations have been found in adult thyroid cancers, they were absent from the two studies which examined childhood thyroid cancers. Both studies included only children with radiation induced thyroid cancer, and it remains unclear if ras mutations occur in children without radiation exposure. To answer this question, we examined archival tissue blocks from 31 children with papillary thyroid cancer (PTC) 4 with follicular thyroid cancer (FTC), 2 with medullary thyroid cancer (MTC), and 1 with lymphoma (LYM). Only 1 patient with PTC had previous radiation exposure. Genomic DNA was extracted and used for PCR amplification of the ras genes. The PCR products were analyzed by oligospecific hybridization for mutations at codons 12, 13, and 61. Two of the PTCs (6.5%) contained ras mutations. Both patients had class II disease and no history of previous radiation exposure. One patient subsequently developed bone and lung metastases. The patient with lymphoma also had a ras mutation (N-61), but ras mutations were absent from all FTC and MTC. These results suggest that ras mutations are uncommon in spontaneous childhood thyroid cancer, but occur with a frequency similar to that found in previous reports of adult differentiated thyroid cancers. The number of subjects was too small to determine if ras mutations are more common in patients with aggressive papillary thyroid cancer.


Ras thyroid cancer childhood 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sakalidou A., Kanavaros P., Tzardi M., Kalmanti M. The expression of MYC and RAS oncogene proteins in childhood lymphomas. Anticancer Res. 1996, 16: 487–492.PubMedGoogle Scholar
  2. 2.
    Kalmanti M., Kalmantis Th., Vassilaki M., Galanopoulos A., Grenzelias D., Spandidos D.A. Expression of the ras p21 oncoprotein in the bone marrow smears of children with acute leukemia. Anticancer Res. 1992, 12: 2177–2180.PubMedGoogle Scholar
  3. 3.
    Boss J. Oncogenes in human cancer. A review. Cancer Res. 1989, 49: 4682–4689.Google Scholar
  4. 4.
    Fagin J. Genetic basis of endocrine disease 3 molecular defects in thyroid gland neoplasia. J. Clin. Endocrinol. Metab. 1992, 75: 1398–1400.PubMedGoogle Scholar
  5. 5.
    Suarez H.G., du Villard J.A., Severino M., Caillou B, Schlumberger M., Tubiana M., Parmentier C., Monier R. Presence of mutations in all three ras genes in human thyroid tumors. Oncogene 1990, 5: 565–570.PubMedGoogle Scholar
  6. 6.
    Capellà G., Matias-Guiu X., Ampudia X., de Leiva A., Perucho M., Prat J. Ras oncogene mutations in thyroid tumors: Polymerase chain reaction-restriction-fragment-length polymorphism analysis from paraffin-embedded tissues. Diagn. Mol. Pathol. 1996, 5: 45–52.PubMedCrossRefGoogle Scholar
  7. 7.
    Hara H., Fulton N., Yashiro T., Ito K., DeGroot L. N-Ras mutation: An independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery 1994, 116: 1010–1016.PubMedGoogle Scholar
  8. 8.
    Oyama T., Suzuki T., Hara F., Iino Y., Ishida T., Sakamoto A., Nakajima T. N-ras mutations of thyroid tumor with special reference to the follicular type. Path. Intern. 1995, 45: 45–50.CrossRefGoogle Scholar
  9. 9.
    Ezzat S., Zheng L., Kolenda J., Safarian A., Freeman J., Asa S. Prevalence of activating ras mutations in morphologically characterized thyroid nodules. Thyroid 1996, 6: 409–416.PubMedCrossRefGoogle Scholar
  10. 10.
    Nikiforov Y., Nikiforova M., Gnepp D., Fagin J. Prevalence of mutations of ras and p53 in benign and malignant thyroid tumors from children exposed to radiation after the Chernobyl nuclear accident. Oncogene 1996, 13: 687–693.PubMedGoogle Scholar
  11. 11.
    Suchy B., Waldmann V., Klugbauer S., Rabes H.M. Absence of ras and p53 mutations in thyroid carcinomas of children after Chernobyl in contrast to adult thyroid tumours. Br. J. Cancer 1998, 77: 952–955.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Challeton C., Bounacer A., Du Villar J.A., Caillou B., De Vathaire F., Monier R., Schlumberger M., Suarez H.G. Pattern of ras and gsp oncogene mutations in radiation-associated human thyroid tumors. Oncogene 1995, 11: 601–603.PubMedGoogle Scholar
  13. 13.
    Du Villard J.A., Schlumberger M., Wicker R., Caillou B., Rochefort P., Feunteun J., Monier R., Parmentier C., Suarez H.G. Role of ras and gsp oncogenes in human epithelial thyroid tumorigenesis. J. Endocrinol. Invest. 1995, 18: 124–126.PubMedGoogle Scholar
  14. 14.
    Wright P.A., Williams E.D., Lemoine N.R., Wynford-Thomas D. Radiation-associated and “spontaneous” human thyroid carcinomas show a different pattern of ras oncogene mutation. Oncogene 1991, 6: 471–473.PubMedGoogle Scholar
  15. 15.
    Schark C., Fulton N., Yashiro T., Stanislav G., Jacoby R, Straus F.H., Dytch H., Bibbo M., Kaplan E.L. The value of measurement of ras oncogenes and nuclear DNA analysis in the diagnosis of Hürthle cell tumors of the thyroid. World J. Surg. 1992, 16: 745–752.PubMedCrossRefGoogle Scholar
  16. 16.
    Clark O.H. Predictors of thyroid tumor aggressiveness. West. J. Med. 1996, 165: 131–138.PubMedCentralPubMedGoogle Scholar
  17. 17.
    Shi Y., Zou M., Schmidt H., Juhasz F., Stensky V., Robb D., Farid N. High rates of ras codon 61 mutations in thyroid tumors in an iodide-deficient area. Cancer Res. 1991, 51: 2690–2693.PubMedGoogle Scholar
  18. 18.
    McClellan D.R., Francis G.L. Thyroid cancer in children, pregnant women, and patients with Graves’ disease. Endocrinol. Metab. Clin. North Am. 1996, 25: 27–48.PubMedCrossRefGoogle Scholar
  19. 19.
    Buckwalter J.A., Gurll N.J., Thomas C.G. Jr. Cancer of the thyroid in youth. World J. Surg. 1981, 5: 15–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Gorlin J.B., Sallan S.E. Thyroid cancer in childhood. Endocrinol. Metab. Clin. North Am. 1990, 19: 649–662.PubMedGoogle Scholar
  21. 21.
    Welch-Dinauer C., Tuttle R.M., Robie D.K., McClellan D.R., Svec R.L., Adair C., Francis G.L. Clinical features associated with metastasis and recurrence of differentiated thyroid cancer in children, adolescents and young adults. Clin. Endocrinol. (Oxf.) 1998, 49: 619–628.CrossRefGoogle Scholar
  22. 22.
    Martin R.K., Archer K.T., Tuttle R.M. Detection of ptc in archival formalin-fixed, paraffin-embedded tissues. Comparison of radiolabeled DNA hybridization and direct incorporation of digoxigenin-11-dUTP into RT-PCR products. Diagn. Mol. Pathol. 1995, 3: 233–239.CrossRefGoogle Scholar
  23. 23.
    Bucsky P., Parlowsky T. Epidemiology and therapy of thyroid cancer in childhood and adolescence. Exp. Clin. Endocrinol. Diabetes 1997, 105: 70–73.PubMedCrossRefGoogle Scholar
  24. 24.
    DeGroot L.J., Kaplan E.L., McCormick M., Straus F.H. Natural history, treatment and course of papillary thyroid carcinoma. J. Clin. Endocrinol. Metab. 1990, 71: 414–424.PubMedCrossRefGoogle Scholar
  25. 25.
    Harach H.R., Williams E.D. Childhood thyroid cancer in England and Wales. Br. J. Cancer 1995, 72: 777–783.PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Waldmann V., Rabes M. Absence of Gsa gene mutations in childhood thyroid tumors after Chernobyl in contrast to adult thyroid neoplasia. Cancer Res. 1997, 57: 2358–2361.PubMedGoogle Scholar
  27. 27.
    Mazzaferri E.L. Papillary thyroid carcinoma: factors influencing prognosis and current therapy. Semin. Oncol. 1987, 14: 315–332.PubMedGoogle Scholar
  28. 28.
    Zimmerman D., Hay I.D., Gough I.R., Goellner J.R., Ryan J.J., Grant C.S., McConahey W.M. Papillary thyroid carcinoma in children and adults: long term follow-up of 1039 patients conservatively treated at one institution during three decades. Surgery 1988, 104: 1157–1166.PubMedGoogle Scholar
  29. 29.
    Tubiana M., Schlumberger M., Rougier P., Laplanche A., Benhamou E., Gardet P., Caillou B., Travagli J.P., Parmentier C. Long-term results and prognostic factors in patients with differentiated thyroid cancer. Cancer 1985, 55: 794–804.PubMedCrossRefGoogle Scholar
  30. 30.
    Gilliland F.D., Hunt W.C., Morris D.M., Key C.R. Prognostic factors for thyroid carcinoma: a population-based study of 15,698 cases from the Surveillance, Epidemiology and End Results (SEER) Program 1973–91. Cancer 1997, 79: 564–573.PubMedCrossRefGoogle Scholar
  31. 31.
    Nikiforov Y., Fagin J. Radiation-induced thyroid cancer in children after the Chernobyl accident. Thyroid Today 1998, 21: 1–11.Google Scholar
  32. 32.
    Namba H., Gutman R., Matsuo K., Alvarea A., Fagin J. H-Ras protooncogene mutations in human thyroid neoplasms. J. Clin. Endocrinol. Metab. 1990, 71: 223–229.PubMedCrossRefGoogle Scholar
  33. 33.
    Karga H., Lee J.K., Vickery A. Jr., Thor A., Gaz R., Jameson L. Ras oncogene mutations in benign and malignant thyroid neoplasms. J. Clin. Endocrinol. Metab. 1991, 73: 832–836.PubMedCrossRefGoogle Scholar
  34. 34.
    Goretzki P., Lyons J., Stacy-Phipps S., Rosenau W., Demeure M., Clark O.H., McCormick F., Röher H.D., Bourne H.R. Mutational activation of ras and gsp oncogenes in differentiated thyroid cancer and their biological implications. World J. Surg. 1992, 16: 576–582.PubMedCrossRefGoogle Scholar
  35. 35.
    Wright P.A., Lemoine N.R., Mayall E.S., Wyllie F.S., Hughes D., Williams E.D., Wynford-Thomas D. Papillary and follicular thyroid carcinomas show a different pattern of ras oncogene mutation. Br. J. Cancer 1989, 60: 576–577.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Italian Society of Endocrinology (SIE) 1999

Authors and Affiliations

  • C. Fenton
    • 1
    • 4
  • J. Anderson
    • 2
  • Y. Lukes
    • 2
  • C. A. Welch Dinauer
    • 1
    • 4
  • R. M. Tuttle
    • 3
  • G. L. Francis
    • 1
    • 4
  1. 1.Department of PediatricsWalter Reed Army Medical CenterWashington, DCUSA
  2. 2.Department of Clinical InvestigationWalter Reed Army Medical CenterWashington, DCUSA
  3. 3.Department of MedicineWalter Reed Army Medical CenterWashington, DCUSA
  4. 4.Department of Pediatrics, F. Edward Hébert School of MedicineUniformed Services University of the Health SciencesBethesdaUSA

Personalised recommendations