Advertisement

Journal d Analyse Mathematique

, Volume 60, Issue 1, pp 259–305 | Cite as

Classes de Gevrey non isotropes dans les domaines de type fini de ℂ2

  • Vincent Thilliez
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B1]
    T. Bloom, C -peak functions for pseudoconvex domains of strict type, Duke Math. J. 45 (1978), 133–147.CrossRefMATHMathSciNetGoogle Scholar
  2. [BO]
    J. Bruna and J.M. Ortega Interpolation by holomorphic functions smooth to the boundary in the unit ball ofN, Math. Ann. 274 (1986), 527–575.CrossRefMATHMathSciNetGoogle Scholar
  3. [Br]
    J. Bruna, An extension theorem of Whitney type for non quasi-analytic classes of functions, J. London Math. Soc. 22 (1980), 495–505.CrossRefMATHMathSciNetGoogle Scholar
  4. [Ca]
    D. Catlin, Estimates for invariant metrics on weakly pseudoconvex domains in2, Math. Z. 200 (1989), 429–466.CrossRefMATHMathSciNetGoogle Scholar
  5. [CC]
    J. Chaumat and A.-M. Chollet, Classes de Gevrey non isotropes et application à l’interpolation, Ann. Scuola Norm. Sup. Pisa (IV) 15 (1988), 615–676.MATHMathSciNetGoogle Scholar
  6. [CW]
    R. R. Coifman and G. Weiss, Analyse harmonique non commutative sur certains espaces homogènes, Springer Lectures Notes 242 (1972).Google Scholar
  7. [Ge]
    M. Gevrey, Sur la nature analytique des solutions des équations aux dérivées partielles, Ann. Ec. Norm. Sup (III 35 (1918), 129–190.MATHMathSciNetGoogle Scholar
  8. [KN]
    J.J. Kohn and L. Nirenberg, A pseudoconvex domain not admitting a holomorphic support function, Math. Ann. 201 (1973), 265–268.CrossRefMATHMathSciNetGoogle Scholar
  9. [NRSW]
    A. Nagel, J.-P. Rosay, E.M. Stein and S. Wainger, Estimates for the Bergman and Szegö kernels in2, Ann. of Math. 129 (1989), 113–149.CrossRefMATHMathSciNetGoogle Scholar
  10. [NSW]
    A. Nagel, E.M. Stein and S. Wainger, Boundary behavior of functions holomorphic in domains of finite type, Proc. Nat. Acad. Sci. USA 78 (1981), 6596–6599.CrossRefMATHMathSciNetGoogle Scholar
  11. [St]
    E.M. Stein, Singular integrals and estimates for the Cauchy-Riemann equations, Bull. Amer. Math. Soc. 79 (1973), 440–445.CrossRefMATHMathSciNetGoogle Scholar
  12. [T1]
    V. Thilliez, Classes de Gevrey non isotropes et interpolation dans les domaines de type fini de2. C. R. Acad. Sci. Paris 313 (série I), 671–674.Google Scholar
  13. [T2]
    V. Thilliez, Interpolation Gevrey dans les domaines de type fini de2, A paraître. Math. Z.Google Scholar
  14. [T3]
    V. Thilliez, Classes de Gevrey non isotropes et interpolation dans les domaines de type fini de2, Thèse, Univ. Paris-XI Orsay (1991).Google Scholar

Copyright information

© The Hebrew University Magnes Press 1993

Authors and Affiliations

  • Vincent Thilliez
    • 1
  1. 1.CNRS - URA N° 757Université de Paris-SudOrsay Cedex

Personalised recommendations