Journal d Analyse Mathematique

, Volume 60, Issue 1, pp 45–70 | Cite as

The Pseudoanalytic Extension

  • E. M. Dyn’kin


Toeplitz Operator Continuous Extension Sobolev Class Trace Space Gevrey Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. A. Borichev, Boundary uniqueness theorems for almost analytic functions and asymmetric algebras of sequences, Math. USSR Sb. 64 (1989), 323–338.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    A. A. Borichev, Beurling algebras and generalized Fourier transform, LOMI preprint, E-15-88, Leningrad, 1989, 54pp.Google Scholar
  3. [3]
    A. A. Borichev and A. L. Volberg, Uniqueness theorems for almost analytic functions, Leningrad Math. J. 1 (1990), 157–191.MATHMathSciNetGoogle Scholar
  4. [4]
    J. E. Brennan and A. L. Volberg, Asymptotic values and the growth of analytic functions in spiral domains, to appear.Google Scholar
  5. [5]
    J. Bruna, Les ensembles d’interpolation des A p (D), C. R. Acad. Sci. Paris 290 (1980), A25–27.MathSciNetGoogle Scholar
  6. [6]
    L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1959), 921–930.CrossRefMathSciNetGoogle Scholar
  7. [7]
    K. M. Dyakonov, Division and multiplication by inner functions and embedding theorems for star-invariant subspaces, Amer. J. Math., to appear.Google Scholar
  8. [8]
    E. M. Dyn’kin, An operator calculus based on the Cauchy-Green formula, Sem. Math. Steklov Math. Iust. Leningrad 19 (1970), 221–226.MathSciNetGoogle Scholar
  9. [9]
    E. M. Dyn’kin, Functions with given estimate for $¶rtial f/¶rtial {⋏r z}$ and N. Levinson’s theorem, Math. USSR. Sb. 18 (1972).Google Scholar
  10. [10]
    E. M. Dyn’kin, On the growth of analytic function near its singularity set, J. Soviet Math. 4 (1975).Google Scholar
  11. [11]
    E. M. Dyn’kin, Estimates for analytic functions in Jordan domains, Zap. Naucn. Semin. LOMI 73 (1977), 70–90.MATHMathSciNetGoogle Scholar
  12. [12]
    E. M. Dyn’kin, Free interpolation sets for Hölder classes. Math. USSR Sb. 37 (1980), 97–117.CrossRefMATHGoogle Scholar
  13. [13]
    E. M. Dyn’kin, On the smoothness of integrals of Cauchy type, Soviet Math, Dokl. 21 (1980), 199–202.MATHGoogle Scholar
  14. [14]
    E. M. Dyn’kin, Pseudoanalytic extensions of smooth functions. The uniform scale, Am. Math. Soc. Transl. (2) 115 (1980), 33–58.MATHGoogle Scholar
  15. [15]
    E. M. Dyn’kin, The rate of polynomial approximation in the complex domain, Springer Lecture Notes in Math. 864 (1981), 90–142.CrossRefMathSciNetGoogle Scholar
  16. [16]
    E. M. Dyn’kin, The constructive characterization of Sobolev and Besov classes, Proc. Steklov Math. Inst. 155 (1983), 39–74.MATHGoogle Scholar
  17. [17]
    E. M. Dyn’kin, Free interpolation by functions with H 1 derivative, J. Soviet Math. 27 (1984), 77–87.Google Scholar
  18. [18]
    E. M. Dyn’kin, Methods of the theory of singular integrals II, Encyclopaedia Math. Sci. Vol. 42, Springer, Berlin, 1991.Google Scholar
  19. [19]
    J. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.MATHGoogle Scholar
  20. [20]
    V. P. Gurarii, On Levinson’s theorem concerning families of analytic functions, Seminars in Math., V. A. Steklov Math. Inst., Leningrad, 19 (1972), 124–127.MathSciNetGoogle Scholar
  21. [21]
    L. Hörmander, The Analysis of Linear Partial Differential Operators I, II, Springer-Verlag, Berlin, 1983.CrossRefGoogle Scholar
  22. [22]
    R. Hornblower, A growth condition for the MacLane class A, Proc. London Math. Soc. 23 (1971), 371–394.CrossRefMATHMathSciNetGoogle Scholar
  23. [23]
    A. Jonsson and H. Wallin, A Whitney extension theorem in L p and Besov spaces, Ann. Inst. Fourier 28 (1978), 139–192.CrossRefMathSciNetGoogle Scholar
  24. [24]
    B. I. Korenblum, Invariant subspaces of the shift operator on a weighted Hilbert space, Math. USSR Sb. 89 (1972), 110–137.MathSciNetGoogle Scholar
  25. [25]
    A. M. Kotochigov, Interpolation by analytic functions smooth up to the boundary, J. Soviet Math. 4 (1975), 4.CrossRefGoogle Scholar
  26. [26]
    N. Levinson, Gap and Density Theorems, AMS, Providence, 1940.Google Scholar
  27. [27]
    V. I. Macaev, Ph.D. Thesis, Harkov, 1964.Google Scholar
  28. [28]
    G. R. MacLane, Asymptotic values of holomorphic functions, Rice Univ. Studies 49, No. 1, 1963.Google Scholar
  29. [29]
    S. Mandelbrojt, Series de Fourier et classes quasi analytiques de fonctions, Gauthier-Villars, Paris, 1935.Google Scholar
  30. [30]
    S. Mandelbrojt, Series adherentes, Paris, 1952.Google Scholar
  31. [31]
    L. Nirenberg, A proof of the Malgrange preparation theorem, Springer Lecture Notes in Math. 192 (1971), 97–105.CrossRefMathSciNetGoogle Scholar
  32. [32]
    N. A. Shirokov, Free interpolation in spaces $C_{n,Ωega} {⊼ A}$, Math. Sbornik 117 (1982), 337–358.MathSciNetGoogle Scholar
  33. [33]
    N. A. Shirokov, Analytic functions smooth up to the boundary, Springer Lecture Notes in Math. 1312 (1988).Google Scholar
  34. [34]
    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, 1970.Google Scholar
  35. [35]
    A. L. Volberg and B. Jöricke, The summability of logarithm of an almost analytic function and a generalization of a theorem of Levinson and Cartwright, Math. USSR Sb. 130 (1986), 335–348.Google Scholar
  36. [36]
    A. L. Volberg and S. V. Konyagin, On measures with the doubling condition, Math. USSR Izvestiya 30 (1988), 629–638.CrossRefMathSciNetGoogle Scholar
  37. [37]
    A. L. Volberg, The Lojasiewicz inequality for very smooth functions, LOMI preprint, E-15-88, Leningrad, 1989, 54pp.Google Scholar
  38. [38]
    S. Warschawski, On conformai mapping of infinite strips, Trans. Am. Math. Soc. 51 (1942), 280–335.MathSciNetGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 1993

Authors and Affiliations

  • E. M. Dyn’kin
    • 1
  1. 1.St. Petersburg University of Electrical Engineering and V. A. Steklov Institute of MathematicsSt. PetersburgRussia

Personalised recommendations