Skip to main content
Log in

Uncoupling of changes in skeletal muscle β-adrenergic receptor density and aerobic capacity during the aging process

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

The results of the present study indicate that the density of the β-adrenergic receptors in the skeletal muscle does not decline with age, despite declines in oxidative capacity both in the skeletal muscle and whole body oxygen consumption. When young rats and old rats of equal body weight trained daily at the same duration and speed for 6 months on the treadmill, skeletal muscle of young and old rats reached the same aerobic capacity. The young demonstrated a significant rise in Bmax of the β receptors, while the old rats did not change their density of receptors. When both young and old rats had the contractile activity of their skeletal muscle raised to the same level through chronic tonic electrical stimulation, the aerobic capacity and β receptor density rose to the same levels in the skeletal muscle. Thus, the contraction-dependent pathway in the senescent muscle appears to function normally given a maximal chronic stimulus via electrical stimulation. These data indicate that the relationship between oxidative capacity, β-adrenergic receptor properties, exercise training, and aging does not appear to be readily explicable by a single unifying mechanism, but probably resides in the interaction of age with a differential responsiveness of the β-adrenergic and/or contraction dependent pathway for stimulation of aerobic capacity in the aging skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goodrick C., Ingram D., Reynolds M., Freeman J., Cider N.: Differential effects of intermittent feeding and voluntary running on body weight and life span in adult rats. J. Gerontol. 38: 36–45, 1983.

    Article  CAS  PubMed  Google Scholar 

  2. Yu B.P., Masoro E.J., McMahan C.A.: Nutritional influences on aging of Fischer 344 rats: I. Physical, metabolic, and longevity characteristics. J. Gerontol. 40: 657–670, 1985.

    Article  CAS  PubMed  Google Scholar 

  3. Cartee G.D., Farrar R.P.: Muscle respiratory capacity and VO2max in identically trained young and old rats. J. Appl. Physiol. 63: 257–261, 1987.

    CAS  PubMed  Google Scholar 

  4. Cartee G.D., Farrar R.P.: Glycogen training induces glycogen sparing during exercise by old rats. J. Appl. Physiol. 64: 259–265, 1988.

    CAS  PubMed  Google Scholar 

  5. Farrar R.P., Martin T.P., Ardies C.M.: The interaction of aging and endurance exercise upon the mitochondrial function of skeletal muscle. J. Gerontol. 36: 642–647, 1981.

    Article  CAS  PubMed  Google Scholar 

  6. Heath G.W., Hagberg J.M., Ehsani A.A., Holloszy J.O.: A physiological comparison of young and older endurance trained adults. J. Appl. Physiol. Respir. Environ. Exercise Physiol. 51: 634–640, 1981.

    CAS  Google Scholar 

  7. Williams R.S., Caron M.G., Daniel K.: Skeletal muscle beta-adrenergic receptors: variations due to fiber type and training. Am. J. Physiol. 246: E160–E167, 1984.

    CAS  PubMed  Google Scholar 

  8. Kraus W.E., Bernard T.S., Williams R.S.: Interactions between sustained activity on beta-adrenergic receptors in regulation of gene expression in skeletal muscles. Am. J. Physiol. 256: C506–C514, 1989.

    CAS  PubMed  Google Scholar 

  9. Williams R.S., Salmons S., Newsholme E.A., Kauffman R.E., Mellor J.: Regulation of nuclear and mitochondrial gene expression by contractile activity in skeletal muscle. J. Biol. Chem. 261: 376–380, 1986.

    CAS  PubMed  Google Scholar 

  10. Martin W.H., Coggan A.R., Spina R.J., Saffitz J.E.: Effects of fiber type and training on β-adrenoceptor density in human skeletal muscle. Am. J. Physiol. 20: E736–742, 1989.

    Google Scholar 

  11. Abrass I.B., Davis J.L., Scarpace P.J.: Isoproternol responsiveness and myocardial β-adrenergic receptors in young and old rats. J. Gerontol. 37: 156–160, 1982.

    Article  CAS  PubMed  Google Scholar 

  12. Scarpace P.J., Abrass I.B.: Beta-adrenergic agonist-mediated desentization in senescent rats. Mech. Ageing Dev. 35: 255–264, 1986

    Article  CAS  PubMed  Google Scholar 

  13. Greenberg L.H., Weiss B.: Beta-adrenergic receptors in aged rat brain: reduced number and capacity of pineal gland to develop supersensitivity. Science 201: 61–63, 1978.

    Article  CAS  PubMed  Google Scholar 

  14. Dax E.M.: Age-related changes in membrane receptor interactions. Endocrinol. Metab. Clin. 16: 947–963, 1987.

    CAS  Google Scholar 

  15. Hansford R.G., Castro F.: Age-linked changes in the activity of enzymes of the tricarboxylate cycle and lipid oxidation, and of carnitine content, in muscles of the rat. Mech. Ageing Dev. 19: 191–201, 1982.

    Article  CAS  PubMed  Google Scholar 

  16. Walters T.J., Sweeney H.L., Farrar R.P.: Influence of electrical stimulation on a fast-twitch muscle in aging rats. J. Appl. Physiol. 71: 1921–1928, 1991.

    CAS  PubMed  Google Scholar 

  17. Westgaard R.S., Lomo T.: Control of contractile properties within adaptive ranges of patterns of impulse activity in the rat. J. Neurosci. 8: 4415–4426, 1988.

    CAS  PubMed  Google Scholar 

  18. Brooks G.A., White T.P.: Determination of metabolic and heart rate responses to rats to treadmill exercise. J. Appl. Physiol. 45: 1009–1015, 1978.

    CAS  PubMed  Google Scholar 

  19. Fell R.D., Lizzo F.H., Cervoni P., Crandall D.L.: Effect of contractile activity on rat skeletal muscle beta-adrenoceptor properties. Proc. Soc. Exp. Biol. Med. 180: 527–532, 1985.

    Article  CAS  PubMed  Google Scholar 

  20. Scatchard G.: The attractions of proteins for small molecules and ions. Ann. N.Y. Acad. Sci. 51: 660–672, 1949.

    Article  CAS  Google Scholar 

  21. Bradford M.: A rapid and sensitive method for the quantita-tion of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  22. Srere P.A.: Citrate synthase. In: Methods in Enzymology. Academic Press, New York, 13: 3–5, 1969.

    CAS  Google Scholar 

  23. Buckenmeyer P.J., Goldfarb A.H., Partilla J.S., Pineyro M.A., Dax E.M.: Endurance training, not acute exercise, differentially alters β-receptors and cyclase in skeletal fiber types. Am. J. Physiol. 9: E71–77, 1990.

    Google Scholar 

  24. Martin W.H., Murphee S.S., Saffitz J.E.: β-adrenergic receptor distribution among fiber types and resistance arterioles of

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrar, R.P., Monnin, K., Fordyce, D.E. et al. Uncoupling of changes in skeletal muscle β-adrenergic receptor density and aerobic capacity during the aging process. Aging Clin Exp Res 9, 153–158 (1997). https://doi.org/10.1007/BF03340141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03340141

Key words

Navigation