Aging Clinical and Experimental Research

, Volume 8, Issue 1, pp 1–12 | Cite as

The effect of age on hemopoiesis

  • D. Quaglino
  • L. Ginaldi
  • N. Furia
  • M. De Martinis
Review Article


Although several workers have described numerous changes affecting the hemopoietic system during senescence, the existence of univocal “hematological disease” closely related to the elderly is controversial. Many of the hematological changes described, such as sideropenic or megaloblastic anemia, are frequently the consequence of the different pathological conditions which often affect elderly patients. This review will consider the most important alterations of hemopoiesis and coagulation in the elderly, the causes capable of influencing hematological changes in old people, and their pathogenesis. Some of the major diagnostic problems encountered in the management of elderly subjects with hematological changes are also addressed. In the presence of an elderly patient with hematological alterations, it is necessary to follow a precise diagnostic schedule, which should first of all exclude the presence of a primary hematological disorder, and consider the different extrahematological conditions which frequently occur in elderly subjects (malignancies, malnutrition, chronic infections from immunological abnormalities, hormonal changes, deficiencies of various organs and systems etc.) and are responsible for many different hematological changes. These must be tackled rationally so that treatment may not only be symptomatic, but may also directly intervene on the cause of the disorder.

Key words

Aging anemias hematology immunology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lipschitz D.A., Udupa K.B., Milton K.Y., Thompson C.O.: Effect of age on hematopoiesis in man. Blood 63: 502–509, 1984.PubMedGoogle Scholar
  2. 2.
    Nilsson-Ehle H., Jagenburg R., Landahl S., Svanborg A., Westin J.: Haematological abnormalities and reference intervals in the elderly. Acta Med. Scand. 224: 595–604, 1988.PubMedCrossRefGoogle Scholar
  3. 3.
    Vogel J.M.: Hematologic problems of the aged. Mt. Sinai J. Med. 47: 150–163, 1980.PubMedGoogle Scholar
  4. 4.
    Lipschitz D.A., Mitchell C.O., Thompson C.: The anemia of senescence. Am. J. Hematol. 11: 47–54, 1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Lipschitz D.A., Udupa K.B.: The quantitation of the granu-locytic/macrophage committed progenitor cell (CFUc) in man and the mouse. Exp. Hematol. 9: 723–731, 1981.PubMedGoogle Scholar
  6. 6.
    Harman S.M., Tsitouras P.D.: Reproductive hormones in aging men. I. Measurement of sex steroids, basal luteinizing hormone, and leydig cell response to human chorionic gonadotropin. J. Clin. Endocrinol. Metab. 51: 35–41, 1980.PubMedCrossRefGoogle Scholar
  7. 7.
    Timiras M.L., Brownstein H.: Prevalence of anemia and correlation of hemoglobin with age in a geriatric screening clinic population. J. Am. Geriatr. Soc. 35: 639–643, 1987.PubMedGoogle Scholar
  8. 8.
    Finch C.A.: Red cell manual. University of Washington, Seattle, 1969, p. 14.Google Scholar
  9. 9.
    Adler S.S.: Anaemia in the aged: causes and considerations. Geriatrics 33: 49–59, 1980.Google Scholar
  10. 10.
    Bagicalupo A.: Treatment of severe aplastic anemia. Lectures, XIIIth Meeting of the International Society of Haematology (European & African Division), Istanbul, Turkey, 1995, p.71.Google Scholar
  11. 11.
    Quaglino D., Hayhoe F.G.J.: Haematological Oncology. Churchill Livingstone, London, Edinburgh, 1992.Google Scholar
  12. 12.
    Krantz S.B.: Diagnosis and treatment of pure red cell aplasia. Med. Clin. North Am. 60: 945–952, 1976.PubMedGoogle Scholar
  13. 13.
    Linsk J.A., Murray C.K.: Erythrocyte aplasia and hypogam-maglobulinemia. Ann. Intern. Med. 55: 831–838, 1969.CrossRefGoogle Scholar
  14. 14.
    Mitchell A.B.S., Pinn G., Pegrum G.D.: Pure red cell aplasia and carcinoma. Blood 37: 594–597, 1971.PubMedGoogle Scholar
  15. 15.
    Marx J.J.M.: Normal iron absorption and decreased red cell iron uptake in the aged. Blood 53: 204–211, 1979.PubMedGoogle Scholar
  16. 16.
    Dunlop W.M., James G.W., Hume D.M.: Anemia and neu-tropenia caused by copper deficiency. Ann. Intern. Med. 80: 470, 1974.CrossRefGoogle Scholar
  17. 17.
    Badenoch J., Bedford P.D., Evans J.R.: Massive diverticulosis of the small intestine with steatorrhoea and megaloblastic anaemia. Q. J. Med. 24: 321–327, 1955.PubMedGoogle Scholar
  18. 18.
    Carmel R., Karnaze D.S.: Physician response to low serum cobalamin levels. Arch. Intern. Med. 146: 1161–1165, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Cooper B.A., Fehedy V., Blanshai P.: Recognition of deficiency of vitamin B12 using measurement of serum concentration. J. Lab. Clin. Med. 107: 447–452, 1986.PubMedGoogle Scholar
  20. 20.
    Thompson W.G., Babitz L., Cassino C., Freedman M.L., Lipkin M.: Evaluation of current criteria used to measure vitamin B12 levels. Am. J. Med. 82: 291–294, 1987.PubMedCrossRefGoogle Scholar
  21. 21.
    Thompson W.G., Freedman M.L.: Vitamin B12 and geriatrics: unanswered questions. Acta Haematol. 82: 169–174, 1989.PubMedCrossRefGoogle Scholar
  22. 22.
    Herbert V.: The megaloblastic anemias. Grune and Stratton, New York, 1959.Google Scholar
  23. 23.
    Herbert V.: Megaloblastic anemias. Lab. Invest. 52: 3–19, 1985.PubMedGoogle Scholar
  24. 24.
    Lindenbaum J., Healton E.B., Savage D.G., Brust J.G., Garret T.J., Podell E.R., Marcell P.D., Stabler S.P., Allen R.H.: Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N. Engl. J. Med. 318: 1720–1728, 1988.PubMedCrossRefGoogle Scholar
  25. 25.
    Bergia J.J.: Eva anemia. Postgrad. Med. 77: 253–269, 1985.Google Scholar
  26. 26.
    Ward H.P., Kurnick J.E., Pisarczyk M.J.: Serum level of erythropoietin in anemia associated with chronic infection malignancy and primary hematologic disease. J. Clin. Invest. 50: 332–336, 1971.PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Yawata Y., Howe R., Jacob H.S.: Abnormal red cell metabolism causing hemolysis in uremia: defect potentiated by tap water hemodialysis. Ann. Intern. Med. 79: 362–367, 1973.PubMedCrossRefGoogle Scholar
  28. 28.
    Ward H.P., Gordon B., Pickett J.C.: Serum levels of erythropoietin in rheumatoid arthritis. J. Lab. Clin. Med. 74: 93–98, 1969.PubMedGoogle Scholar
  29. 29.
    Cartwright G.E., Lee G.R.: Annotation: the anemia of chronic disorders. B r. J. Haematol. 21: 147–152, 1971.CrossRefGoogle Scholar
  30. 30.
    Francavilla S.: Alterazioni ematologiche nelle malattie endocrine. In: Quaglino D. (Ed.), Alterazioni ematologiche in Medicina Interna. Piccin Editore, Padova, 1996.Google Scholar
  31. 31.
    Beregi E., Regius O., Rajczy K.: Comparative study of the morphological changes in lymphocytes of elderly individuals and centenarians. Age Ageing 20: 55–59, 1991.PubMedCrossRefGoogle Scholar
  32. 32.
    Traill K.N., Jurgens G., Block G., Huber L., Schonitzer D., Widhalm K., Winter U., Wick G.: Analysis of fluorescent low density lipoprotein uptake by lymphocytes. Paradoxical increase in the elderly. Mech. Ageing Dev. 40: 261–288, 1987.PubMedCrossRefGoogle Scholar
  33. 33.
    Hartsock R.J., Smith E.B., Ketter C.S.: Normal variation with aging of the amount of hematopoietic tissue in bone-marrow from anterior iliac crest. Am. J. Clin. Pathol. 43: 325–333, 1965.Google Scholar
  34. 34.
    Lee M.A., Segal G.M., Bagby G.C.: The hematopoietic microenvironment in the elderly: defects in Il1-induced CSF expression in vitro. Exp. Hematol. 17: 952–956, 1989.PubMedGoogle Scholar
  35. 35.
    Hellman S., Botnick L.E., Hannon E.C., Vignuelle R.M.: Proliferative capacity of murine hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 75: 490–501, 1978.PubMedCrossRefGoogle Scholar
  36. 36.
    Mauch P., Botnick L.E., Hannon E.C., Obbagy J., Hellman S.: Decline in bonemarrow proliferative capacity as a function of age. Blood 60: 245–252, 1982.PubMedGoogle Scholar
  37. 37.
    Lansdorp P.M.: Telomere length and proliferation potential of hematopoietic stem cells. J. Cell. Sciences 108: 1–6, 1995.Google Scholar
  38. 38.
    Vaziri H., Schachter F., Uchida I., Wei L., Zhu X., Effros R., Cohen D., Harley C.B.: Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am. J. Hum. Genet. 52: 661–667, 1993.PubMedCentralPubMedGoogle Scholar
  39. 39.
    Zsebo K.M., Yuschenkoff V.N., Schiffer S., Chang D., Mc-Call E., Dinarello C.A., Brown M.A., Altrock B., Bagby G.C.: Vascular endothelial cells and granulopoiesis: Interleukin 1 stimulates release of G-CSF and GM-CSF. Blood 71: 99–107, 1988.PubMedGoogle Scholar
  40. 40.
    Herrmann F., Oster W., Meuer S.C., Lindermann A., Mertelsmann R.H.: Interleukin 1 stimulates lymphocytes to produce granulocyte-monocyte colony-stimulating factor. J. Clin. Invest. 81: 1415–1418, 1988.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Munker R.J., Gasson J., Ogawa M., Koeffler H.P.: Recombinant human TNF induces production of granulocyte-monocyte colony stimulating factor. Nature 323: 79–82, 1986.PubMedCrossRefGoogle Scholar
  42. 42.
    Murasko D.M., Weiner P., Kaye D.: Decline in mitogen induced proliferation of lymphocytes with increasing age. Clin. Exp. Immunol. 70: 440–448, 1987.PubMedCentralPubMedGoogle Scholar
  43. 43.
    Gillis S., Kozak R., Durante M., Weksler M.E.: Immunological studies of aging. Decreased production of and response to T cell growth factor by lymphocytes from aged humans. J. Clin. Invest. 67: 937–942, 1981.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Staiano-Coico L., Darzynkiewicz Z., Melamed M.R., Weksler M.E.: Immunological studies of aging. IX. Impaired proliferation of T lymphocytes detected in elderly humans by flow cytometry. J. Immunol. 132: 1788–1792, 1984.PubMedGoogle Scholar
  45. 45.
    Traill K.N., Ratheiser K., Dietrich M., Sailer S., Zevenbergen J.L., Wicck G.: Lack of correlation between serum cholesterol levels, lymphocyte plasma membrane fluidity and mitogen responsiveness in young and aged chickens. Mech. Ageing Dev. 28: 123–138, 1984.PubMedCrossRefGoogle Scholar
  46. 46.
    Gutowski J.K., Innes J., Weksler M.E., Cohen S.: Induction of DNA synthesis in isolated nuclei by cytoplasmic factors. II. Normal generation of cytoplasmic stimulatory factors by lymphocytes from aged humans with depressed proliferative responses. J. Immunol. 132: 559–562, 1984.PubMedGoogle Scholar
  47. 47.
    Gilman S.C., Rosenberg J.S., Feldman J.D.: T lymphocytes from young and aged rats. II. Functional defects and the role of interleukin 2. J. Immunol. 128: 644–650, 1982.PubMedGoogle Scholar
  48. 48.
    Cantrell D.A., Smith K.A.: The Interleukin T-cell system: a new cell growth model. Science (Wash. DC) 244: 1312–1316, 1984.CrossRefGoogle Scholar
  49. 49.
    Nagel J.E., Chopra R.K., Chrest F.J., McCoy M.T., Schneider E.L., Holbrook N.J., Adler W.H.: Decreased prolifera-tion, interleukin 2 synthesis, and interleukin 2 receptor expression are accompained by decreased mRNA expression in phytohemagglutinin-stimulated cells from elderly donors. J. Clin. Invest. 81: 1096–1102, 1988.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Rubin L.A., Jay G., Nelson D.L.: The released interleukin 2 receptor binds interleukin 2 efficiently. J. Immunol. 137: 3841–3844, 1986.PubMedGoogle Scholar
  51. 51.
    Kumar A., Moreau J.L., Baran D., Theze J.: Evidence for negative regulation of T cell growth by low affinity interleukin 2 receptors. J. Immunol. 138: 1485–1493, 1987.PubMedGoogle Scholar
  52. 52.
    Smith K.A., Cantrell D.A.: Interleukin 2 regulates its own receptors. Proc. Natl. Acad. Sci. USA 82: 864–868, 1985.PubMedCrossRefGoogle Scholar
  53. 53.
    Vie H., Miller R.A.: Decline with age, in the proportion of mouse T cells that express Il2 receptors after mitogen stimulation. Mech. Ageing Dev. 33: 313–322, 1986.PubMedCrossRefGoogle Scholar
  54. 54.
    Flurkey K., Stadecker M., Miller R.A.: Memory T lymphocyte hyporesponsiveness to non-cognate stimuli: a key factor in age-related immunodeficiency. Eur. J. Immunol. 22: 931–935, 1992.PubMedCrossRefGoogle Scholar
  55. 55.
    Krishnaraj R., Blandford G.: Ageassociated alterations in human natural killer cells. I. Increased activity as per conventional and kinetic analysis. Clin. Immunol. Immunopathol. 45: 268–285, 1987.PubMedCrossRefGoogle Scholar
  56. 56.
    Crawford J., Cohen H.J.: Aging and neoplasia. Annu. Rev. Gerontol. Geriatr. 4: 3–32, 1984.PubMedGoogle Scholar
  57. 57.
    Mege J.L., Capo C., Michel B., Gastau J.L., Bongrand P.: Phagocytic cell function in aged subjects. Neurobiol. Aging 9: 217–220, 1988.PubMedCrossRefGoogle Scholar
  58. 58.
    Fulop T., Foris G., Worum I., Paragh G., Leovey A.: Age-related variations of some polymorphonuclear leukocyte functions. Mech. Ageing Dev. 29: 1–8, 1985.PubMedCrossRefGoogle Scholar
  59. 59.
    Babior B.M.: The respiratory burst of phagocytosis. J. Clin. Invest. 73: 599, 1984.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Lipschitz D.A., Udupa K.B., Indelicato S.R., Das M.: Effect of age on second messenger generation in neutrophils. Blood 78: 1347–1354, 1991.PubMedGoogle Scholar
  61. 61.
    Beisel W.R.: Single nutrients and immunity. Am. J. Clin. Nutr. 35: 417–468, 1982.PubMedGoogle Scholar
  62. 62.
    Bogden J.D., Oleske J.M., Munves E.M., Lavenhar M.A., Bruening K.S., Kemp F.W., Holding K.S., Denny T.N., Louria T.B.: Zinc and immunocompetence in the elderly: baseline data on zinc nutriture and immunity in unsupplemented subjects. Am. J. Clin. Nutr. 46: 101–109, 1987.PubMedGoogle Scholar
  63. 63.
    Bick R.L.: Common bleeding and clotting disorders. Med. Clin. North Am. 78: 3, 1994.Google Scholar
  64. 64.
    Meade T.W., Vickers M.V., Thrompson S.G., Stirling Y., Haines A.P., Miller G.J.: Epidemiological characteristics of platelet aggregability. B r. Med. J. 290: 428–432, 1985.CrossRefGoogle Scholar
  65. 65.
    Shreiner D.P., Bell W.R.: Pseudothrombocytopenia: manifestation of a new type of platelet agglutinin. Blood 42: 541–547, 1973.PubMedGoogle Scholar
  66. 66.
    Scott B.D.: Heparin-induced thrombocytopenia. Postgrad. Med. 86: 153–155, 1981.Google Scholar
  67. 67.
    Ingeberg S., Stofferson E.: Platelet dysfunction in patients with vitamin B12 deficiency. Acta Haematol. 61: 75–79, 1979.PubMedCrossRefGoogle Scholar
  68. 68.
    Rutherford C.J., Frenkel E.P.: Thrombocytopenia: issues in diagnosis and therapy. In: R.L. Bick (Ed.), Common bleeding and clotting disorders. Med. Clin. North Am. 78: 555–575, 1994.Google Scholar
  69. 69.
    Martin J.F., Bath P.M.V., Burr M.L.: Influence of platelet size on outcome after myocardial infarction. Lancet 338: 1409–1411, 1991.PubMedCrossRefGoogle Scholar
  70. 70.
    Martin J.F., Shaw T., Heggie J., Penington D.G.: Measurement of the density of human platelets and its relationship to volume. Br. J. Haematol. 54: 337–352, 1983a.PubMedCrossRefGoogle Scholar
  71. 71.
    Hendagma P.J., Bainton D.F.: Incorporation of a circulating protein into alpha-granules of megakaryocytes. Blood 15: 59–72, 1989.Google Scholar
  72. 72.
    Cramer E.M., Debili N., Martin J.F., Gladwin A.M., Breton-Gorius J., Harrison P., Savidge G.F., Vainchenker W.: Uncoordinated expression of fibrinogen compared with thrombos-pondin and von Willebrand factor in maturing human mega-karyocytes. Blood 73:1123–1129, 1989.PubMedGoogle Scholar
  73. 73.
    Trowbridge E.A., Slater D.N., KishK Y.T., Woodcock B.W.: Platelet production in myocardial infarction and sudden cardiac death. Thromb. Haemost. 52: 2701–2705, 1984.Google Scholar
  74. 74.
    Martin J.F.: The relationship between platelet volume and megakaryocytes ploidy. Blood Cells 15: 108–117, 1989.PubMedGoogle Scholar
  75. 75.
    Hoffman R.: Regulation of megakaryocytopoiesis. Blood 74: 1196–1212, 1989.PubMedGoogle Scholar
  76. 76.
    Arbustini E., Grasso M., Diegli M., Pucci A.: Coronary atherosclerotic plaques with and without thrombus in ischemic heart syndromes: a morphologic, immunohistochemical and biochemical study. Am. J. Cardiol. 68: 36B–49B, 1991.PubMedCrossRefGoogle Scholar
  77. 77.
    Smith R.E.A., Martin J.F.: Endogenous mediators and thrombophilia. In: Meade T.W. (Ed.), Thrombophilia. Bailliere’s Clin. Haematol. 7: 485–497, 1994.CrossRefGoogle Scholar
  78. 78.
    Kannel W.B., Wolf P.A., Castelli W.P., D’Agostino R.B.: Fibrinogen and risk of cardiovascular disease. The Framingham study. JAMA 258: 1183–1186, 1987.PubMedCrossRefGoogle Scholar
  79. 79.
    Balleisen L., Bailey J., Epping P.H., Shulte H., Van de Loo J.: Epidemiological study on factor VII, factor VIII and fibrinogen in an industrial population. I. Baseline data on the relation to age, gender, body-weight, smoking, alcohol, pillusing and menopause. Thromb. Haemost. 54: 475–479, 1985.PubMedGoogle Scholar
  80. 80.
    Stegnar M., Keber D., Pentek M.: Age and sex differences in resting and postocclusion values of tissue plasminogen activator in a healty population. Fibrinolysis 2(Suppl. 2): 121–122, 1980.Google Scholar
  81. 81.
    Bauer K.A., Weiss L.M., Sparrow D., Vokonas P.S., Rosenberg R.D.: Aging associated changes in indices of thrombin generation and protein C activation in humans. Normative Aging Study. J. Clin. Invest. 80: 1527–1534, 1987.PubMedCentralPubMedCrossRefGoogle Scholar
  82. 82.
    Bauer K.A., Kass B.L., Cate H.C., Hawinger J.J, Rosenberg R.D.: Factor IX is activated in vivo by the tissue factor mechanism. Blood 76: 731–736, 1990.PubMedGoogle Scholar
  83. 83.
    Cadroy Y., Pierrejean D., Fontan B., Sie P., Boneu B.: Influence of aging on the activity of the haemostatic system: prothrombin fragment 1+2 thrombin-antithrombin III complexes and D-dimers in 80 healthy subjects with age ranging from 20 to 94 years. Nouv. Rev. Fr. Hematol. 34: 43–46, 1992.PubMedGoogle Scholar

Copyright information

© Springer Internal Publishing Switzerland 1996

Authors and Affiliations

  • D. Quaglino
    • 1
  • L. Ginaldi
    • 1
  • N. Furia
    • 1
  • M. De Martinis
    • 1
  1. 1.Clinica Medica II, Dipartimento di Medicina Interna e Sanità PubblicaUniversity of L’AquilaL’AquilaItaly

Personalised recommendations