Advertisement

Daily hunger sensation and body composition: I. Their relationships in clinically healthy subjects

  • Pietro Cugini
  • A. Salandri
  • M. Cilli
  • P. Ceccotti
  • A. Di Marzo
  • A. Rodio
  • F. Marcianò
  • S. Fontana
  • A. M. Pellegrino
  • K. Vacca
  • G. Di Siena
  • G. P. De Francesco
  • S. Coda
  • C. M. Petrangeli
  • C. Giovannini
Original Research Paper

Abstract

The human hunger sensation (HS) is a perceptive signal characterized by day-night variability (DNV). This pattern was investigated with respect to its relations with the body compartments in 22 clinically healthy subjects (CHS, 11 males and 11 females mean age: 24±2.5 years, mean BMI: 21±1.7). The DNV was investigated by means of con ventional descriptive statistics and the single cosinor method (SCM). Both procedures were applied to the orexigram, i.e., the 24-h profile of the orectic stimulus (OS) provided by each subject, who self-rated his/her HS (from 1 to 10 hunger units) every half hour. Body composition was investigated by Bioelectrical Impedance Analysis (BIA) on the day when the orexigrams were compiled. It was found that the daily HS level correlates positively with the Free Fat Body Mass (FFBM) and negatively with the Fat Body Mass (FBM). These opposite relations indicate that HS is stimulated by the needs of the FFBM, and inhibited by expansion of the FBM, and provide further evidence of the existence of an “adipostat anorectic mechanism.

Key words

Bioelectric impedance analysis body compartments body composition chronobiology circadian rhythms eating disorders hunger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cugini P., Murano G., Lucia P., Mazzetti di Pietralata M.: Circadian and ultradian rhythms for hunger behaviour. In: Ferrari E., Brambilla F. (Eds.), Disorders of eating behaviour. A psychoneuroendocrine approach. Advances in the biosciences, Oxford, Pergamon Press, 1986, Vol. 60., pp. 93–96.Google Scholar
  2. 2.
    Cugini P., Battisti P., Di Palma L.: Eating behaviour: investigation on the recursive components of hunger sensation by iterative rhythmometry. Ital. J. Gastroenterol., 23, 128–131, 1991.PubMedGoogle Scholar
  3. 3.
    Cugini P., Battisti P., Di Palma L., Di Stasio E.M., Paggi A., De Luca A., Ciamei A., Ferrari, E.: Spectral analysis of hunger sensation in obese patients provides evidence for three subtypes, namely eurectic, hyperrectic and hyporectic obesity. In: Proceedings of the 2nd International Symposium on “Disorders of Eating Behaviour”. Pavia, September 15–19, 1992. Advances in the Biosciences, Oxford, Pergamon Press., 1993, Vol. 90., pp. 393–396.Google Scholar
  4. 4.
    Cugini P., Battisti P., Paggi A., Di Stasio E.M., Di Palma L., Morelli F., Pisculli M., Lavielle R.: Chronobiometric identification of disorders of hunger sensation in essential obesity: thera-peutic effects of dexfenfluramine. Metabolism, 44, 50–56, 1995.PubMedCrossRefGoogle Scholar
  5. 5.
    Cugini P., Battisti P., Di Palma L., Ferrari E.: Spectral analysis to explore hunger sensation in obesity. Chronobiol. Section, 1, 37–44, 1995.Google Scholar
  6. 6.
    Cugini P., Fatati G., Paggi A., Coaccioli S., Paci F., Palazzi M., Puxeddu A.: Hunger sensation in patients with compensated and uncompensated type 1 and type 2 diabetes mellitus. Int. J. Eating Disord., 20, 85–98, 1996.CrossRefGoogle Scholar
  7. 7.
    Cugini P., Battisti P., Paggi A., Di Stasio M.E.: Twenty-four-hour pattern of hunger sensation in obesity complicated by type 2 diabetes mellitus: a pattern recognition by spectral analysis. Metabolism, 45, 1342–1347, 1996.PubMedCrossRefGoogle Scholar
  8. 8.
    Heymsfield S.B., Waki M.: Body composition in humans: advances in the development of multicompartment chemical models. Nutr. Rev., 49, 97–108, 1991.PubMedCrossRefGoogle Scholar
  9. 9.
    Segal K.R., Gutin B., Presta E., Wang J., Van Itallie T.B.: Estimation of human body composition by electrical impedance methods: a comparative study. J. Appl. Physiol., 58, 1565–1571, 1985.PubMedGoogle Scholar
  10. 10.
    Segal K.R., Van Loan M., Fitzgerald P.I., Hodgon J.A., Van Itallie T.B.: Lean body mass estimation by bioelectrical impedance analysis: a four-site cross-validation study. Am. J. Clin. Nutr., 47, 7–14, 1988.PubMedGoogle Scholar
  11. 11.
    Segal K.R., Burastero S., Chun A., Coronel P., Pireson R., Wang J.: Estimation of extracellular and body water by multiple-frequency bio-electrical impedance measurement. Am. J. Clin. Nutr., 54, 26–29, 1991.PubMedGoogle Scholar
  12. 12.
    Kushner R.F., Schoeller A.D.: Estimation of total body water by bioelectrical impedance analysis. Am. J. Clin. Nutr., 44, 417–424, 1986.PubMedGoogle Scholar
  13. 13.
    Van Loan N., Mayclin P.: Bioelectrical impedance analysis: is it a reliable estimator of lean body mass and total body water. Am. J. Hum. Biol., 59, 299–309, 1987.Google Scholar
  14. 14.
    Jackson A.S., Pollock M.L., Graves J.E., Mahar M.T.: Reliability and validity of bioelectrical impedance in determining body composition. J. Appl. Physiol., 64, 519–534, 1988.Google Scholar
  15. 15.
    Shizgal H.M.: Validation of the measurement of body composition from whole bioelectric impedance. Surg. Forum., 39, 67–74, 1988.Google Scholar
  16. 16.
    Deurenberg P.: International consensus con-ference on impedance in body composition. Age & Nutrition, 5, 142–145, 1994.Google Scholar
  17. 17.
    Ross R., Legger L., Martin P., Roy R.: Sensitivity of bioelectrical impedance to detect changes in human body composition. J. Appl. Physiol., 67, 1643–1647, 1989.PubMedGoogle Scholar
  18. 18.
    Halberg F., Johnson E.A., Nelson W., Runge W., Sothern R.B.: Autorhythmometry: proce-dures for physiologic self-measurements and their analysis. Physiol. Teach., 1, 1–11, 1972.Google Scholar
  19. 19.
    Considine R.V., Caro J.F.: Leptin and the regulation of body weight. Int. J. Biochem. Cell. Biol., 29, 1255–1272, 1997.PubMedCrossRefGoogle Scholar
  20. 20.
    Ahren B., Larsson H., Wilhelmsson C., Nasman B., Olsson T.: Regulation of circulating leptin in humans. Endocrine, 7, 1–8, 1997.PubMedCrossRefGoogle Scholar
  21. 21.
    Perry H.M. 3rd, Morley J.E., Horowitz M., Kaiser F.E., Miller D.K., Wittert G.: Body composition and age in African-American and Caucasian women: relationship to plasma leptin levels. Metabolism, 46, 1399–1405, 1997.PubMedCrossRefGoogle Scholar
  22. 22.
    Shillabeer G., Vydelingum S., Hatch G., Russell J.C., Lau D.C.: Long-term regulation of leptin expression is correlated with adipocyte number in obese rats. Clin. Invest. Med., 21, 54–62, 1998.PubMedGoogle Scholar
  23. 23.
    Stephens T.W., Caro J.F.: To be lean or not to be lean. Is leptin the answer? Exp. Clin. Endocrinol. Diabetes, 106, 1–15, 1998.PubMedCrossRefGoogle Scholar
  24. 24.
    Xu B., Dube M.G., Kalra P.S., Farmerie W.G., Kaibara A., Moldawer L.L., Martin D., Kalra S.P.: Anorectic effects of the cytokine, ciliary neurotropic factor, are mediated by hypothalamic neuropeptide Y: comparison with leptin. Endocrinology, 139, 466–473, 1998.PubMedGoogle Scholar
  25. 25.
    Friedman J.M.: Leptin, leptin receptors, and the control of body weight. Nutr. Rev., 56, s38–s46, 1998.PubMedCrossRefGoogle Scholar

Copyright information

© Editrice Durtis 1998

Authors and Affiliations

  • Pietro Cugini
    • 1
  • A. Salandri
    • 1
  • M. Cilli
    • 1
  • P. Ceccotti
    • 1
  • A. Di Marzo
    • 1
  • A. Rodio
    • 1
  • F. Marcianò
    • 1
  • S. Fontana
    • 1
  • A. M. Pellegrino
    • 1
  • K. Vacca
    • 1
  • G. Di Siena
    • 1
  • G. P. De Francesco
    • 1
  • S. Coda
    • 1
  • C. M. Petrangeli
    • 1
  • C. Giovannini
    • 1
  1. 1.Institute of II Clinical MedicineUniversity “La Sapienza”RomeItaly

Personalised recommendations