Advertisement

Aging Clinical and Experimental Research

, Volume 12, Issue 5, pp 393–397 | Cite as

Glutamate and catabolites of high-energy phosphates in the striatum and brainstem of young and aged rats subchronically exposed to manganese

  • M. Miele
  • P. A. Serra
  • G. Esposito
  • M. R. Delogu
  • R. Migheli
  • G. Rocchitta
  • M. S. Desole
Original Article

Abstract

The degradation of high-energy phosphates was recently shown to precede manganese-induced cellular death. We evaluated hypoxanthine, xanthine, uric acid and glutamate levels in the striatum and brainstem of 3- and 20-month-old rats after subchronic oral exposure to manganese (MnCl2, 200 mg/kg/day in young rats, and 50–100 or 200 mg/kg/day in aged rats). Aged rats had higher basal levels of hypoxanthine, xanthine, and glutamate both in the striatum and brainstem than young rats; conversely, basal uric acid levels were lower in the striatum, but higher in the brainstem. Manganese induced a significantly greater increase in hypoxanthine, xanthine, uric acid and gluta-mate levels in aged rats than in young rats in both brain regions. These findings depict a greater manganese-induced energetic impairment (increases in hypoxanthine and xanthine levels), xanthine oxidase-induced free radical generation (increases in xanthine and uric acid levels), and excitotoxic status (increases in glutamate levels) in aged rats than in young rats. In addition, these findings may also account for a greater manganese toxicity to the nigro-striatal dopaminergic system in aged than in young rats, as shown in a previous work.

Key words

Aged rats brainstem manganese purine catabolism striatum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Donaldson J.: The physiopathological significance of manganese in brain: Its relation to schizophrenia and neurode-generative disorders. Neurotoxicology 8: 451–462, 1987.PubMedGoogle Scholar
  2. 2.
    Sun A.Y., Yang W.L., Kim H.D.: Free radical and lipid per-oxidation in manganese-induced neuronal cell injury. Ann. N.Y. Acad. Sci. 679: 358–363, 1993.PubMedCrossRefGoogle Scholar
  3. 3.
    Desole M.S, Esposito G., Migheli R., Sircana S., Delogu M.R., Fresu L., Miele M., De Natale G., Miele E.: Glutathione deficiency potentiates manganese toxicity in rat striatum and brainstem and in PC12 cells. Pharmacol. Res. 36: 285–292, 1997.PubMedCrossRefGoogle Scholar
  4. 4.
    Rabinovich A.D., Hastings T.G.: Role of endogenous glutathione in the oxidation of dopamine. J. Neurochem. 71: 2071–2078, 1998.CrossRefGoogle Scholar
  5. 5.
    Liccione J.J., Maines M.D.: Selective vulnerability of glutathione metabolism and cellular defense mechanisms in rat striatum to manganese. J. Pharmacol. Exp. Ther. 247: 156–161, 1988.PubMedGoogle Scholar
  6. 6.
    Desole M.S., Esposito G., Migheli R., Fresu L., Sircana S., Zangani D., Miele M., Miele E.: Cellular defense mechanism in the striatum of young and aged rats subchronically exposed to manganese. Neuropharmacology 34: 289–295, 1995.PubMedCrossRefGoogle Scholar
  7. 7.
    Hastings T.G., Lewis D.A., Zigmond M.J.: Role of oxidative stress in the neurotoxic effects of intrastriatal dopamine injections. Proc. Natl. Acad. Sci. U.S.A. 93: 1056–1061, 1996.Google Scholar
  8. 8.
    Desole M.S, Sciola L., Delogu M.R., Sircana S., Migheli R.: Manganese and 1-methyl-4-(2-′ethylphenyl)-1,2,3,6-tetrahydropyridine induce apoptosis in PC12 cells. Neurosci. Lett. 209: 193–196, 1996.PubMedCrossRefGoogle Scholar
  9. 9.
    Desole M.S, Sciola L., Delogu M.R., Sircana S., Migheli R., Miele E.: Manganese and 1-methyl-4-(2-′ethylphenyl)-1,2,3,6-tetrahydropyridine-induced apoptosis in PC12 cells: role of oxidative stress. Neurochem. Int. 31: 169–176, 1997.PubMedCrossRefGoogle Scholar
  10. 10.
    Migheli R., Godani C., Sciola L., Delogu M.R., Serra P.A., Zangani D., De Natale G., Miele E., Desole M.S.: Enhancing effect of manganese on L-DOPA-induced apoptosis in PC12 cells: role of oxidative stress. J. Neurochem. 73: 1155–1163, 1999.PubMedCrossRefGoogle Scholar
  11. 11.
    Sershen H., Mason M.F., Hashim A., Lajtha A.: Effect of Nmethyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on age-related changes in dopamine turnover and transport function in the mouse striatum. Eur. J. Pharmacol. 113: 135–136, 1985.PubMedCrossRefGoogle Scholar
  12. 12.
    Brewer G.J.: Age-related toxicity to lactate, glutamate and beta-amyloid in cultured adult neurons. Neurobiol. Aging 19: 561–568, 1998.PubMedCrossRefGoogle Scholar
  13. 13.
    Noack H., Lindenau J., Rothe F., Asayama K., Wolf G.: Differential expression of superoxide dismutase isoform in neuronal and glial compartments in the course of excitotoxically mediated neurodegeneration: relation to oxidative and nitrergic stress. Glia 23: 285–297, 1998.PubMedCrossRefGoogle Scholar
  14. 14.
    McNaught K.S., Jenner P.: Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenyl-pyridinium- and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures. J. Neurochem. 73: 2469–2476, 1999.PubMedCrossRefGoogle Scholar
  15. 15.
    Desole M.S., Esposito G., Enrico P., Miele M., Fresu L., De Natale G., Miele E., Grella G.: Effect of ageing on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxic effects on striatum and brainstem in the rat. Neurosci. Lett. 159: 143–146, 1993.PubMedCrossRefGoogle Scholar
  16. 16.
    Roth J.A., Feng L., Walowitz J., Browne R.W.: Manganeseinduced rat pheochromocytoma (PC12) cell death is independent of caspase activation. J. Neurosci. Res. 61: 162–171, 2000.PubMedCrossRefGoogle Scholar
  17. 17.
    Hillered L., Kotwica Z., Ungerstedt U.: Interstitial and cerebrospinal fluid levels of energy-related metabolites after middle cerebral artery occlusion in rats. Res. Exp. Med. 191: 219–225, 1991.CrossRefGoogle Scholar
  18. 18.
    Zoref-Shani E., Bromberg Y., Shirin C., Sidi Y., Sperling O.: Metabolic fate of hypoxanthine and inosine in cultured cardiomyocites. J. Mol. Cell. Cardiol. 24: 183–189, 1992.PubMedCrossRefGoogle Scholar
  19. 19.
    Becker B.B.: Towards the physiological function of uric acid. Free Rad. Biol. Med. 14: 615–631, 1993.PubMedCrossRefGoogle Scholar
  20. 20.
    Desole M.S., Esposito G., Migheli R., Fresu L., Sircana S., Miele M., De Natale G., Miele E.: Allopurinol protects against manganese-induced oxidative stress in the striatum and in the brainstem of the rat. Neurosci. Lett. 192: 73–76, 1995.PubMedCrossRefGoogle Scholar
  21. 21.
    Gavin C.E., Gunter K.K., Gunter T.E.: Mn2+ sequestration by mitochondria and inhibition of oxidative phosphorylation. Toxicol. Appl. Pharmacol. 115: 1–5, 1992.PubMedCrossRefGoogle Scholar
  22. 22.
    Bondy S.C., LeBel C.P.: Relationship between excitotoxicity and oxidative stress in the central nervous system. Free Rad. Biol. Med. 14: 433–452, 1993.CrossRefGoogle Scholar
  23. 23.
    Han J., Cheng F-C., Yang Z., Dryhurst G.: Inhibitors of mitochondrial respiration, iron (II) and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson’s disease. J. Neurochem. 73: 1683–1695, 1999.PubMedCrossRefGoogle Scholar
  24. 24.
    Kiyatkin E.A., Rebec G.V.: Ascorbate modulates glutamate-induced excitations of striatal neurons. Brain Res. 812: 14–22, 1998.PubMedCrossRefGoogle Scholar
  25. 25.
    Murphy T.H., Schnaar T.O., Coyle J.T.: Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J. 4: 1624–1633, 1990.PubMedGoogle Scholar
  26. 26.
    Dringen R., Pfeiffer B., Hamprecht B.: Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of Cys-Gly as precursor for neuronal glutathione. J. Neurosci. 15: 562–569, 1999.Google Scholar
  27. 27.
    Trotti D., Danbolt N.C., Volterra A.: Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic degeneration? Trends Pharmacol. Sci. 19: 328–334, 1998.PubMedCrossRefGoogle Scholar
  28. 28.
    Stover J.F., Lowitzsch K., Kempski O.S.: Cerebrospinal fluid hypoxanthine, xanthine and uric acid levels may reflect glutamate-mediated excitotoxicity in different neurological diseases. Neurosci. Lett. 238: 25–28, 1997.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Internal Publishing Switzerland 2000

Authors and Affiliations

  • M. Miele
    • 1
    • 2
  • P. A. Serra
    • 1
  • G. Esposito
    • 1
  • M. R. Delogu
    • 1
  • R. Migheli
    • 1
  • G. Rocchitta
    • 1
  • M. S. Desole
    • 1
  1. 1.Department of Pharmacology, Gynecology and ObstetricsUniversity of SassariSassariItaly
  2. 2.The Bethlem and Maudsley NHS TrustBethlem Royal HospitalBeckenhamUK

Personalised recommendations