Aging Clinical and Experimental Research

, Volume 10, Issue 3, pp 249–262 | Cite as

Musculoskeletal challenges of osteoporosis

  • M. Sinaki
Review Article


Reduction in the biomechanical competence of the axial skeleton can result in challenging complications. Osteoporosis consists of a heterogeneous group of syndromes in which bone mass per unit volume is reduced in otherwise normal bone, which results in more fragile bone. The geriatric population has an increased risk for debilitating postural changes because of several factors. The two most apparent factors are involutional loss of functional muscle motor units and the greater prevalence of osteoporosis in this population. Obviously, the main objective of rehabilitation is to prevent fractures rather than to treat the complications. These complications can vary from “silent” compression fractures of vertebral bodies, to sacral insufficiency fractures, to “breath-taking” fractures of the spine or femoral neck. The exponential loss of bone at the postmenopausal stage is not accompanied by an incremental loss of muscle strength. The loss of muscle strength follows a more gradual course and is not affected significantly by a sudden hormonal decline, as is the case with bone loss. This muscle loss may contribute to osteoporosis-related skeletal disfigurations. In men and women, the combination of aging and reduction of physical activity can affect musculoskeletal health, and contribute to the development of bone fragility. The parallel decline in muscle mass and bone mass with age is more than a coincidence, and inactivity may explain some of the bone loss previously associated with aging per se. Kyphotic postural change is the most physically disfiguring and psychologically damaging effect of osteoporosis and can contribute to an increment in vertebral fractures and the risk of falling. Axial skeletal fractures, such as fracture of the sacral alae (sacral insufficiency fracture) and pubic rami, may not be found until radiographic changes are detected. Management of chronic pain should include not only improvement of muscle strength and posture but also, at times, reduction of weight bearing on the painful pelvis with insufficiency fractures. Axial skeletal health can be assisted with improvement of muscular supportive strength. Disproportionate weakness in the back extensor musculature relative to body weight or flexor strength considerably increases the risk of compressing porous vertebrae. A proper exercise program, especially osteogenic exercises, can improve musculoskeletal health in osteoporotic patients. Exercise not only improves musculoskeletal health but also can reduce the chronic pain syndrome and decrease depression. Application of a proper back support can decrease kyphotic posturing and can expedite the patient’s return to ambulatory activities. Measures that can increase safety during ambulatory activities can reduce risk of falls and fractures. Managing the musculoskeletal challenges of osteoporosis goes hand in hand with managing the psychological aspects of the disease.

Key words

Exercise fractures osteoporosis pain management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peck W.A., Riggs B.L., Bell N.H., Wallace R.B., Johnston C.C. Jr., Gordon S.L., Shulman L.E.: Research directions in osteoporosis. Am. J. Med. 84: 275–282, 1988.PubMedCrossRefGoogle Scholar
  2. 2.
    Riggs B.L., Melton L.J. III: Involutional osteoporosis. N. Engl. J. Med. 314: 1676–1686, 1986.PubMedCrossRefGoogle Scholar
  3. 3.
    Davies C.T., Thomas D.O., White M.J.: Mechanical properties of young and elderly human muscle. Acta Med. Scand. 711 (Suppl.): 219–226, 1986.Google Scholar
  4. 4.
    Sinaki M., Limburg P.J., Wollan P.C., Rogers J.W., Murtaugh P.A.: Correlation of trunk muscle strength with age in children 5 to 18 years old. Mayo Clin. Proc. 71: 1047–1054, 1996.PubMedCrossRefGoogle Scholar
  5. 5.
    Lindsay R.: Estrogen deficiency. In: Riggs B.L., Melton L.J. III (Eds.), Osteoporosis: Etiology, Diagnosis, and Management, ed. 2. Lippincott-Raven, Philadelphia, 1995, pp. 133–160.Google Scholar
  6. 6.
    Sinaki M., Offord K.P.: Physical activity in postmenopausal women: effect on back muscle strength and bone mineral density of the spine. Arch. Phys. Med. Rehabil. 69: 277–280, 1988.PubMedGoogle Scholar
  7. 7.
    Sinaki M.: Postmenopausal spinal osteoporosis: physical therapy and rehabilitation principles. Mayo Clin. Proc. 57: 699–703, 1982.PubMedGoogle Scholar
  8. 8.
    Urist M.R.: Orthopaedic management of osteoporosis in post-menopausal women. Clin. Endocrinol. Metab. 2: 159–176, 1973.PubMedCrossRefGoogle Scholar
  9. 9.
    Saville P.D.: The syndrome of spinal osteoporosis. Clin. Endocrinol. Metab. 2: 177–185, 1973.PubMedCrossRefGoogle Scholar
  10. 10.
    Sinaki M.: Musculoskeletal rehabilitation. In: Riggs B.L., Melton L.J. III (Eds.), Osteoporosis: Etiology, Diagnosis, and Management, ed. 2. Lippincott-Raven, Philadelphia, 1995, pp. 435–473.Google Scholar
  11. 11.
    Nordin B.E., Horsman A., Crilly R.G., Marshall D.H., Simpson M.: Treatment of spinal osteoporosis in postmenopausal women. BMJ 280: 451–455, 1980.PubMedCrossRefGoogle Scholar
  12. 12.
    Sinaki M., Grubbs N.C.: Back strengthening exercises: quantitative evaluation of their efficacy for women aged 40 to 65 years. Arch. Phys. Med. Rehabil. 70: 16–20, 1989.PubMedGoogle Scholar
  13. 13.
    Sinaki M.: Beneficial musculoskeletal effects of physical activity in the older woman. Geriatr. Med. Today 8: 53–72, 1989.Google Scholar
  14. 14.
    McComas A.J., Fawcett P.R., Campbell M.J., Sica R.E.: Electrophysiological estimation of the number of motor units within a human muscle. J. Neurol. Neurosurg. Psychiatry 34: 121–131, 1971.PubMedCrossRefGoogle Scholar
  15. 15.
    Gutmann E.: Age changes in the neuromuscular system and aspects of rehabilitation medicine. In: Buerger A.A., Tobis J.S. (Eds.), Neurophysiologic Aspects of Rehabilitation Medicine. Charles C Thomas, Springfield, IL, 1976, pp. 42–61.Google Scholar
  16. 16.
    Lynn S.G., Sinaki M., Westerlind K.C.: Balance characteristics of persons with osteoporosis. Arch. Phys. Med. Rehabil. 78: 273–277, 1997.PubMedCrossRefGoogle Scholar
  17. 17.
    Sinaki M., Khosla S., Limburg P.J., Rogers J.W., Murtaugh P.A.: Muscle strength in osteoporotic versus normal women. Osteoporos. Int. 3: 8–12, 1993.PubMedCrossRefGoogle Scholar
  18. 18.
    Adams P., Eyre D.R., Muir H.: Biochemical aspects of development and ageing of human lumbar intervertebral discs. Rheumatol. Rehabil. 16: 22–29, 1977.PubMedCrossRefGoogle Scholar
  19. 19.
    Adams J.E., Chen S., Adams P.H., Isherwood I.: Dual energy computed tomography and the estimation of bone mass. J. Comput. Assist. Tomogr. 6: 204, 1982 (Abstract).CrossRefGoogle Scholar
  20. 20.
    Rudins A., Sinaki M., Miller J.L., Piper S.M., Bergstralh E.J.: Significance of back extensors versus back flexors in trunkal support. Arch. Phys. Med. Rehabil. 72: 824, 1991 (Abstract).Google Scholar
  21. 21.
    Phillips B.E., Tsutsui Y., Sinaki M.: Back extensor strength as it relates to age and gender. 8th World Congress of International Rehabilitation Medicine Association, Kyoto, Japan, 1997 (Abstract).Google Scholar
  22. 22.
    Sinaki M.: The influence of exercise on bone and the rehabilitation of osteoporotic patients. In: Passeri M. (Ed.), The Opinion of the Orthopedist and Physiatrist. EDIMES Publishing, Italy, 1995.Google Scholar
  23. 23.
    Healey J.H., Lane J.M.: Structural scoliosis in osteoporotic women. Clin. Orthop. 195: 216–223, 1985.PubMedGoogle Scholar
  24. 24.
    Frost H.M.: A determinant of bone architecture. The minimum effective strain. Clin. Orthop. 175: 286–292, 1983.PubMedGoogle Scholar
  25. 25.
    Brown I.W., Ring P.A.: Osteolytic changes in the upper femoral shaft following porous-coated hip replacement. J. Bone Joint Surg. 67B: 218–221, 1985.Google Scholar
  26. 26.
    Murphy S.B., Walker P.S., Schiller A.L.: Adaptive changes in the femur after implantation of an Austin Moore prothesis. J. Bone Joint Surg. 66A: 437–443, 1984.Google Scholar
  27. 27.
    Tonino A.J., Davidson C.L., Klopper P.J., Linclau L.A.: Protection from stress in bone and its effects: experiments with stainless steel and plastic plates in dogs. J. Bone Joint Surg. 58B: 107–113, 1976.Google Scholar
  28. 28.
    Uhthoff H.K., Finnegan M.: The effects of metal plates on post-traumatic remodelling and bone mass. J. Bone Joint Surg. 65B: 66–71, 1983.Google Scholar
  29. 29.
    Wolff J.: Das Gesetz der Transformation der Knochen. A. Hirschwald, Berlin, 1892.Google Scholar
  30. 30.
    Mack P.B., LaChance P.A., Vose G.P., Vogt F.B.: Bone demineralization of foot and hand of Gemini-Titan IV, V and VII astronauts during orbital flight. Am. J. Roentgenol. 100: 503–511, 1967.CrossRefGoogle Scholar
  31. 31.
    Stein T.P., Gaprindashvili T.: Spaceflight and protein metabolism, with special reference to humans. Am. J. Clin. Nutr. 60: 806S–819S, 1994.PubMedGoogle Scholar
  32. 32.
    Marchetti M.E., Houde J.P., Steinberg G.G., Crane G.K., Goss T.P., Baran D.T.: Humeral bone density losses after shoulder surgery and immobilization. J. Shoulder Elbow Surg. 5: 471–476, 1996.PubMedCrossRefGoogle Scholar
  33. 33.
    Uebelhart D., Demiaux-Domenech B., Roth M., Chantraine A.: Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilisation. A review. Paraplegia 33: 669–673, 1995.PubMedCrossRefGoogle Scholar
  34. 34.
    Hetland M.L., Haarbo J., Christiansen C.: Low bone mass and high bone turnover in male long distance runners. J. Clin. En-docrinol. Metab. 77: 770–775, 1993.Google Scholar
  35. 35.
    Mickelsfield L.K., Lambert E.V., Fataar A.B., Noakes T.D., Myburgh K.H.: Bone mineral density in mature, premenopausal ultramarathon runners. Med. Sci. Sports Exerc. 27: 688–696, 1995.Google Scholar
  36. 36.
    Robinson T.L., Snow-Harter C., Taaffe D.R., Gillis D., Shaw J., Marcus R.: Gymnasts exhibit higher bone mass than runners despite similar prevalence of amenorrhea and oligomenorrhea. J. Bone Miner. Res. 10: 26–35, 1995.PubMedCrossRefGoogle Scholar
  37. 37.
    Petrie R.S., Sinaki M., Squires R.W., Bergstralh E.J.: Physical activity, but not aerobic capacity, correlates with back strength in healthy premenopausal women from 29 to 40 years of age. Mayo Clin. Proc. 68: 738–742, 1993.PubMedCrossRefGoogle Scholar
  38. 38.
    Notelovitz M., Fields C., Caramelli K., Dougherty M., Schwartz A.L.: Cardiorespiratory fitness evaluation in climacteric women: comparison of two methods. Am. J. Obstet. Gynecol. 154: 1009–1013, 1986.PubMedCrossRefGoogle Scholar
  39. 39.
    Dehn M.M., Bruce R.A.: Longitudinal variations in maximal oxygen intake with age and activity. J. Appl. Physiol. 33: 805–807, 1972.PubMedGoogle Scholar
  40. 40.
    Åstrand I.: Aerobic work capacity in men and women with special reference to age. Acta. Physiol. Scand. 49 (Suppl. 169): 45–58, 1960.Google Scholar
  41. 41.
    Nilsson B.E., Andersson S.M., Havdrup T., Westlin N.E.: Ballet-dancing and weight-lifting effects on BMC. AJR 131: 541–542, 1978 (Abstract).Google Scholar
  42. 42.
    Heaney R.P.: Prevention of osteoporotic fracture in women. In: Avioli L.V. (Ed.), The Osteoporotic Syndrome: Detection, Prevention, and Treatment, ed. 2. Grune & Stratton, Orlando, 1987, pp. 67–90.Google Scholar
  43. 43.
    Karlsson K., Johnell O., Obrant K.J.: High bone mineral density induced by weight lifting, returns to normal after cessation of training career. Orthop. Res. Soc. Trans. 19: 35, 1994.Google Scholar
  44. 44.
    Skerry T.M.: Mechanical loading and bone. What sort of exercise is beneficial to the skeleton? Bone 20: 179–181, 1997.PubMedCrossRefGoogle Scholar
  45. 45.
    Sinaki M.: Effect of physical activity on bone mass. Curr. Opin. Rheumatol. 8: 376–383, 1996.PubMedCrossRefGoogle Scholar
  46. 46.
    Sinaki M., Wahner H.W., Bergstralh E.J., Hodgson S.F., Offord K.P., Squires R.W., Swee R.G., Kao P.C.: Three-year controlled, randomized trial of the effect of dose-specified loading and strengthening exercises on bone mineral density of spine and femur in nonathletic, physically active women. Bone 19: 233–244, 1996.PubMedCrossRefGoogle Scholar
  47. 47.
    Sinaki M.: Metabolic bone disease. In: Sinaki M. (Ed.), Basic Clinical Rehabilitation Medicine, ed. 2. Mosby, St. Louis, 1993, pp. 209–236.Google Scholar
  48. 48.
    Sinaki M.: Osteoporosis. In: DeLisa J.A. (Ed.), Rehabilitation Medicine: Principles and Practice, ed. 2. J.B. Lippincott, Philadelphia, PA, 1993, pp. 1018–1035.Google Scholar
  49. 49.
    Sinaki M., Mokri B.: Low back pain and disorders of the lumbar spine. In: Braddom R.L. (Ed.), Physical Medicine and Rehabilitation. WB Saunders, Philadelphia, PA, 1996, pp. 813–850.Google Scholar
  50. 50.
    Sinaki M., Chan C., Plucinski T., Ackerman M.: Spondylolis-thesis of the osteoporotic spine. Fourth International Symposium on Osteoporosis and Consensus Development Conference. Hong Kong, March 27-April 2, 1993.Google Scholar
  51. 51.
    Berger R.A.: Comparison of static and dynamic strength increases. Res. Quart. 33: 329, 1962.Google Scholar
  52. 52.
    Berger R.A.: Comparison between static training and various dynamic training programs. Res. Quart. 34: 131, 1963.Google Scholar
  53. 53.
    Sinaki M., Wollan P.C., Scott R.W., Gelczer R.K.: Can strong back extensors prevent vertebral fractures in women with osteoporosis? Mayo Clin. Proc. 71: 951–956, 1996.PubMedGoogle Scholar
  54. 54.
    Lozupone E., Favia A., Grimaldi A.: Effect of intermittent mechanical force on bone tissue in vitro: preliminary results. J. Bone Miner. Res. 7 (Suppl. 2): S407–S409, 1992.PubMedCrossRefGoogle Scholar
  55. 55.
    Rubin C.T., Lanyon L.E.: Regulation of bone formation by applied dynamic loads. J. Bone Joint Surg. 66A: 397–402, 1984.Google Scholar
  56. 56.
    Sinaki M., Itoi E., Rogers J.W., Bergstralh E.J., Wahner H.W.: Correlation of back extensor strength with thoracic kyphosis and lumbar lordosis in estrogen-deficient women. Am. J. Phys. Med. Rehabil. 75: 370–374, 1996.PubMedCrossRefGoogle Scholar
  57. 57.
    McQuain M.T., Sinaki M., Shibley L.D., Wahner H.W., Ilstrup D.M.: Effect of electrical stimulation on lumbar paraspinal muscles. Spine 18: 1787–1792, 1993.PubMedCrossRefGoogle Scholar
  58. 58.
    Folz T.J., Sinaki M.: A nouveau aid for posture training in degenerative disorders of the central nervous system. J. Mus-culoskel. Pain 3: 59–69, 1995.CrossRefGoogle Scholar
  59. 59.
    Bloomfield S.A., Williams N.I., Lamb D.R., Jackson R.D.: Non-weightbearing exercise may increase lumbar spine bone mineral density in healthy postmenopausal women. Am. J. Phys. Med. Rehabil. 72: 204–209, 1993.PubMedCrossRefGoogle Scholar
  60. 60.
    Rico H., Revilla M., Hernandez E.R., Gomez-Castresana F., Villa L.F.: Bone mineral content and body composition in post-pubertal cyclist boys. Bone 14: 93–95, 1993.PubMedCrossRefGoogle Scholar
  61. 61.
    Ekin J.A., Sinaki M.: Vertebral compression fractures sustained during golfing: report of three cases. Mayo Clin. Proc. 68: 566–570, 1993.PubMedCrossRefGoogle Scholar
  62. 62.
    Woo S.L.Y., Kuei S.C., Amiel D., Gomez M.A., Hayes W.C., White F.C., Akeson W.H.: The effect of prolonged physical training on the properties of long bone: a study of Wolff’s law. J. Bone Joint Surg. 63A: 780–787, 1981.Google Scholar
  63. 63.
    Fehling P.C., Alekel L., Clasey J., Rector A., Stillman R.J.: A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone 17: 205–210, 1995.PubMedCrossRefGoogle Scholar
  64. 64.
    Frost H.M.: Vital biomechanics: proposed general concepts for skeletal adaptations to mechanical usage (Editorial). Calcif. Tissue Int. 42: 145–156, 1986.CrossRefGoogle Scholar
  65. 65.
    Kohrt W.M., Snead D.B., Slatopolsky E., Birge S.J. Jr: Additive effects of weight-bearing exercise and estrogen on bone mineral density in older women. J. Bone Miner. Res. 10: 1303–1311, 1995.PubMedCrossRefGoogle Scholar
  66. 66.
    Walsh N.E., Schwartz R.K.: The influence of prophylactic or-thoses on abdominal strength and low back injury in the workplace. Am. J. Phys. Med. Rehabil. 69: 245–250, 1990.PubMedCrossRefGoogle Scholar
  67. 67.
    Kaplan R.S., Sinaki M., Hameister M.: Effect of back supports on back strength in patients with osteoporosis: a pilot study. Mayo Clin. Proc. 71: 235–241, 1996.PubMedCrossRefGoogle Scholar
  68. 68.
    Sinaki M.: Rehabilitation of osteoporotic fractures of the spine. Phys. Med. Rehabil. 9: 105–123, 1995.Google Scholar

Copyright information

© Springer Internal Publishing Switzerland 1998

Authors and Affiliations

  • M. Sinaki
    • 1
  1. 1.Department of Physical Medicine and RehabilitationMayo Clinic and Mayo FoundationRochesterUSA

Personalised recommendations