Advertisement

JOM

, Volume 34, Issue 9, pp 35–41 | Cite as

Grain Refinement and Grain Size Control in Superplastic Forming

  • John A. Wert
Physical Metallurgy

Summary

Fine grain size is a microstructural requirement for superplastic alloys. We now have a general understanding of the methods of grain refinement and of restriction of grain coarsening. Phase transformation, recrystallation, deformation of duplex microstructures, and phase separation in duplex alloys can produce grain refinement, while particle dispersions and partitioning in duplex microstructures are useful methods for restricting grain coarsening. The methods selected for grain refinement and grain coarsening control for a specific alloy depend on the character of the alloy. Application of several of these methods to grain refinement and grain coarsening control in high-strength aluminum alloys is discussed.

Keywords

Recrystallization Nucleation Site Deformation Zone Diffusional Creep Duplex Microstructure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Edington, K.N. Melton, and C.P. Cutler, Progress in Materials Science, 21,(3) (1976), Pergamon, Oxford.Google Scholar
  2. 2.
    L.F. Porter and D.S. Dabkowaski, “Grain-Size Control by Thermal Cycling” in Ultra Fine-Grain Metals, edited by J.J. Burke and V. Weiss, proceedings of conference held in Sagamore, New York, August 1969, pp. 133–161.Google Scholar
  3. 3.
    R.A. Grange, Trans ASM, 59, 1966, pp. 26–48.Google Scholar
  4. 4.
    M. Cohen and W.S. Owen, “Thermo-Mechanical Processing of Microalloyed Steels,” in Micro Alloying 75, proceedings of conference held in Washington, D. C., October 1975, Union Carbide Corporation, New York (1977), pp. 2–8.Google Scholar
  5. 5.
    T.M. Hoogendoorn and M.J. Spanraft, “Quantifying the Effect of Microalloying Elements on Structures During Processing,” in Microalloying 75, proceedings of conference held in Washington, D.C., October 1975, published by Union Carbide Corporation, New York (1977), pp. 75–85.Google Scholar
  6. 6.
    D. Lee and W.A. Backofen, Trans. AIME, 239, (1976), pp. 1,034–1,040.Google Scholar
  7. 7.
    N.E. Paton and C.H. Hamilton, Met. Trans., 10A, (1979), pp. 241–250.CrossRefGoogle Scholar
  8. 8.
    J.J. Kearns, J.E. McCauley, and F.A. Nichols, J. Nuclear Materials, 61, (1976), pp. 169–184.CrossRefGoogle Scholar
  9. 9.
    O.D. Sherby, B. Walser, C.M. Young, and E.M. Cady, Scripta Met. 9, (1975), pp. 569–574.CrossRefGoogle Scholar
  10. 10.
    B. Walser and O.D. Sherby, Met. Trans., 10A, (1979), pp. 1,461–1,471.CrossRefGoogle Scholar
  11. 11.
    H. Ishikawa, Mohamed, and T.G. Langdon, Phil. Mag., 32 (1975), pp. 1269–1271.CrossRefGoogle Scholar
  12. 12.
    F.A. Mohamed, M.M.I. Ahmed, and T.G. Langdon, Met. Trans., 8A (1977), pp. 933–938.CrossRefGoogle Scholar
  13. 13.
    S. Sagat, P. Blenkinsop, and D.M.R. Taplin, J. Inst. Metals, 100, (1972), pp. 268–274.Google Scholar
  14. 14.
    N. Ridley and C.W. Humphries, J. Mat. Sci., 13, (1978), pp. 2,477–2,482.CrossRefGoogle Scholar
  15. 15.
    S.W. Zehr and W.A. Backofen, Trans. ASM, 61, (1968), pp. 300–312.Google Scholar
  16. 16.
    M.M.I. Ahmed and T.G. Langdon, Met. Trans., 8A, (1977), pp. 1,832–1,833.CrossRefGoogle Scholar
  17. 17.
    G. Piatti, G. Pellegrini, and R. Trippodo, J. Mat. Sci., 11, (1976), pp. 186–190.CrossRefGoogle Scholar
  18. 18.
    D.L. Holt and W.A. Backofen, Trans. ASM, 59, (1966), pp. 755–768.Google Scholar
  19. 19.
    N.J. Grant and G. Raj, Met. Trans., 6A, (1975), pp. 385–390.Google Scholar
  20. 20.
    R.L. Morris, “Grain Boundary Strengthened Aluminum Sheet,” in Proc. Fourth Int. Conf. Strength of Metals and Alloys, Nancy, France, August 30-September 3, 1976, pp. 649–653.Google Scholar
  21. 21.
    M. Peters and G. Leutijering, “Control of Microstructure and Texture in Ti-6A1-4V”, in Proc. of the Fourth Int. Conf. on Titanium, edited by H. Kimura and O. Izumi Kyoto, Japan, May 19–22, 1980, pp. 925–935.Google Scholar
  22. 22.
    E. Hornbogen, “Design of Heterogeneous Microstructures by Recrystallization,” in Fundamental Aspects of Structural Alloy Design, edited by R. Jaffee and B. Wilcox, Plenum Press, New York, 1977, pp. 389–410.CrossRefGoogle Scholar
  23. 23.
    M. Peters, G. Ziegler, and G. Lütjering, Z. Metallkunde, 73, (1982) to be published.Google Scholar
  24. 24.
    F-W. Ling and D.E. Laughlin, Met. Trans., 10A, (1979), pp. 921–928.CrossRefGoogle Scholar
  25. 25.
    P. Cotterill and P.R. Mould, Recrystallization and Grain Growth in Metals Surry University Press, London, 1976, pp. 181–249.Google Scholar
  26. 26.
    F.J. Humphries, Metal Sci., 13, (1979), pp. 136–145.Google Scholar
  27. 27.
    E. Nes, Metal. Odlew., 5, (1979), pp. 209–224.Google Scholar
  28. 28.
    H. Ahlborn, E. Hornbogen, and V. Koster, J. Mat. Sci., 4, (1969), pp. 944–950.CrossRefGoogle Scholar
  29. 29.
    H.J. McQueen, “The Experimental Roots of Thermomechanical Treatments for Aluminum Alloys,” in Thermomechanical Processing of Aluminum Alloys, edited by James G. Morris, The Metallurgical Society of AIME, Warrendale, Pennsylvania, 1979, pp. 1–24.Google Scholar
  30. 30.
    J. Waldman, H. Sulinski, and H. Markus, Met. Trans., 5, (1974), pp. 573–584CrossRefGoogle Scholar
  31. 31.
    J.A. Wert, N.E. Paton, C.H. Hamilton, and M.W. Mahoney, Met. Trans., 12A, (1981), pp. 1,267–1,276.CrossRefGoogle Scholar
  32. 32.
    B.M. Watts, M.J. Stowell, B.L. Baikie, and D.G.E. Owen, Metal Sci., 10, (1976), pp. 189–197.CrossRefGoogle Scholar
  33. 33.
    B.M. Watts, M.J. Stowell, B.L. Baikie, and D.G.E. Owen, Metal Sci., 10, (1976), pp. 198–206.Google Scholar
  34. 34.
    C. Zener, private communication to C.S. Smith, Trans. AIME, 175, (1949), p. 15.Google Scholar
  35. 35.
    T. Gladman, Proc. Roy. Sci., 294, (1966), pp. 298–309.CrossRefGoogle Scholar
  36. 36.
    M. Hillert, Acta Met., 13, (1965), pp. 227–238.CrossRefGoogle Scholar
  37. 37.
    K.G. Wold and F.M. Chambers, J. Australian Institute Metals, 13, (1968), pp. 79–87.Google Scholar
  38. 38.
    N.W. Haroun and D.W. Budworth, J. Mat. Sci., 3, (1968), pp. 326–328.CrossRefGoogle Scholar
  39. 39.
    P. Cotterill and P.R. Mould, Recrystallization and Grain Growth in Metals, Surry University Press, London, 1976, pp. 266–325.Google Scholar
  40. 40.
    A.K. Ghosh, “Dynamics of Microstructural Changes in a Superplastic Aluminum Alloy,” in Proc. Second Riso Symposium on Metallurgy and Materials Science, Riso, Denmark, September 1981, pp. 277–283.Google Scholar
  41. 41.
    K. Mader and E. Hornbogen, Scripta Met., 8, (1974), pp. 979–983.CrossRefGoogle Scholar
  42. 42.
    J.T. Staley, “Microstructure and Toughness of High-Strength Aluminum Alloys,” in Properties Related to Fracture Toughness, ASTM STP 605, American Society for Testing and Materials, 1976, pp. 71–103.Google Scholar
  43. 43.
    F.J. Humphries, Metal Sci., 15, (1977), pp. 1,323–1,344.Google Scholar
  44. 44.
    C.C. Bampton, J.A. Wert, and M.W. Mahoney, Met. Trans., 13A, (1982), pp. 193–198.CrossRefGoogle Scholar
  45. 45.
    A.K. Ghosh, “Characterization of Superplastic Behavior of Metals,” in Superplastic Forming of Structural Alloys, edited by N.E. Paton and C.H. Hamilton, The Metallurgical Society of AIME, Warrendale, Pennsylvania, 1982, pp. 85–103.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 1982

Authors and Affiliations

  • John A. Wert
    • 1
  1. 1.Rockwell International Science CenterThousand Oaks

Personalised recommendations