Boundary-Layer Meteorology

, Volume 16, Issue 3, pp 115–129 | Cite as

Incorporation of Planetary Boundary-Layer Processes into Numerical Forecasting Models

  • Mohamed S. Smeda


A study has been made of the evolution of the planetary boundary layer height (PBLH), the heat flux, and momentum flux using Clarke’s Wangara data for a period of two days and two nights, 33/34-34/35. The observed Wangara data are considered as being an output of the first two internal levels of a general circulation model, at 1000 and 2000 m height.

A time-dependent equation has been used to forecast, explicitly, the PBLH for both convectively unstable and stable periods. A comparison is made between observed and computed values whenever possible.

In the unstable case, the Deardorff model (1974) has been used for the prediction of the unstable PBLH. Part of the stable case study involved a formulation of a time-dependent model for the prediction of the stable PBLH. The solution obtained from the model compared favourably with the results of a model suggested by Khakimov.


Heat Flux Potential Temperature Planetary Boundary Layer Friction Velocity Stable Layer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.CrossRefGoogle Scholar
  2. Businger, J. A. and Arya, S. P. S.: 1974 ‘Height of the Mixed Layer in the Stably stratified Planetary Boundary Layer’, Adv. Geophys., 18A, Academic Press, 73–92.Google Scholar
  3. Clarke, R. H.: 1970, ‘Recommended Methods for the Treatment of the Boundary Layer in Numerical Models’, Austral. Meteorol. Mag. 18, 51–73.Google Scholar
  4. Clarke, R. H., Dyer, A. J., Brook, R. R., Reid, D. G., and Troup A. J.: 1971, ‘The Wangara Experiment: Boundary Layer Data’, CSIRO Australia, Division of Meteorological Physics Tech. Paper No. 19.Google Scholar
  5. Carson, D. J.: 1973, ‘The Development of a dry Inversion-Capped Convectively Unstable Boundary Layer’, Quart. J. Roy. Meteorol. Soc. 99, 450–467.CrossRefGoogle Scholar
  6. Carson, D. J. and Smith, F. B.: 1974, ‘Thermodynamic Model for the Development of a Convectively Unstable Boundary Layer’, Adv. Geophys. 18A, Academic Press, New York.Google Scholar
  7. Deardorff, J. W., Willis, G. E., and Lilly, D K.: 1969, ‘Laboratory Investigation of Non-Steady Penetrative Convection’, J. Fluid Mech. 35, 7–31.CrossRefGoogle Scholar
  8. Deardorff, J. W.: 1972, ‘Parameterization of the Planetary Boundary Layer for use in General Circulation Models’, Mon. Wea. Rev. 100, 93–106.CrossRefGoogle Scholar
  9. Deardorff, J. W.: 1974, ‘Three-Dimensional Numerical Study of the Height and Mean Structure of a Heated Planetary Boundary Layer’, Boundary-Layer Meteorol. 7, 81–106.Google Scholar
  10. Delsol, F., Miyakoda, K., and Clarke, R. H.: 1971, ‘Parameterized Processes in the Surface Boundary Layer of an Atmospheric Circulation Model’, Quart. J. Roy. Meteorol. Soc. 97, 181–208.CrossRefGoogle Scholar
  11. Kato, H. and Phillips, O. M.: 1969, ‘On the Penetration of a Turbulent Layer into Stratified Fluid’, J. Fluid Mech. 37, 643–655.CrossRefGoogle Scholar
  12. Khakimov, I. R.: 1976, ‘An Engineering Model of the Nonstationary Atmospheric Boundary Layer in Strong Winds’, Izv. Acad. Sci., USSR, Atmos. Ocean. Phys., 12, (9).Google Scholar
  13. Khakimov, I. R.: 1976, ‘The Wind Profile and the Thickness of the Neutrally Stratified Atmospheric Boundary Layer’, Izv. Acad. Sci., USSR, Atmos. Ocean. Phys. 12, (10).Google Scholar
  14. Tennekes, H.: 1973, ‘A Model for the Dynamics of the Inversion Above a Convective Boundary Layer’, J. Atmos. Sci. 30, 558–567.CrossRefGoogle Scholar
  15. Zilitinkevich, S. S.: 1972, ‘On the determination of the Height of the Ekman Boundary Layer’, Boundary-Layer Meteorol. 3, 141–145.CrossRefGoogle Scholar
  16. Zilitinkevich, S. S. and Chalikov, D. V.: 1968, ‘The Laws of Resistance and of Heat and Moisture Exchange in the Interaction Between the Atmosphere and an Underlying Surface,’ Izv. Akad. Nauk. SSSR, Fiz. Atmos. Okeana 4,(7) 438–441. (Engl. Transl.)Google Scholar
  17. Zilitinkevich, S.S.: 1975, ‘Resistance Laws and Prediction Equations for the Depth of the Planetary Boundary Layer’, J. Atmos. Sci. 32, 741–752.CrossRefGoogle Scholar
  18. Zilitinkevich, S. S. and Deardorff, J. W.: 1974, ‘Similarity Theory for the Planetary Boundary Layer of Time-Dependent Height’, J. Atmos. Sci. 31, 1449–1452.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1979

Authors and Affiliations

  • Mohamed S. Smeda
    • 1
  1. 1.Department of MeteorologyUniversity of Stockholm, Arrhenius LaboratoryStockholmSweden

Personalised recommendations