Skip to main content
Log in

Brain-gut axis of the liver: the role of central neuropeptides

  • Brain-gut relations, basics and clinics, from the viewpoint of neurogastroenterology
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Pavlov I. The work of the digestive glands [English translation]. London: C. Griffin; 1910.

    Google Scholar 

  2. Selye H. Syndrome produced by diverse noctious agents. Nature 1932;138:32.

    Article  Google Scholar 

  3. Brooks FP. Central neural control of acid secretion. In: Code CF, editor. Handbook of physiology. Washington, DC: American Physiological Society; 1967. p. 805.

    Google Scholar 

  4. Krieger DT. Brain peptides: what, where and why? Science 1983;222:975–85.

    Article  PubMed  CAS  Google Scholar 

  5. Leslie RA. Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus. Neurochem Int 1985;7:191–211.

    Article  PubMed  CAS  Google Scholar 

  6. Swanson LW, Sawchenko PE. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 1983;6:269–324.

    Article  PubMed  CAS  Google Scholar 

  7. Taché Y, Vale W, Bown M. Thyrotropin-releasing hormone—CNS action to stimulate gastric acid secretion. Nature 1980;287:149–51.

    Article  PubMed  Google Scholar 

  8. Taché Y, Vale W, Rivier J, Brown M. Brain regulation of gastric secretion: influence of neuropeptides. Proc Natl Acad Sei USA 1980;77:5515–9.

    Article  Google Scholar 

  9. Taché Y, Maeda-Hagiwara M, Turkelson CM. Central nervous system action of corticotropin-releasing factor to inhibit gastric emptying in rats. Am J Physiol 1987;253:G241–5.

    PubMed  Google Scholar 

  10. Lenz HJ, Klapdor R, Hester SE, Webb VJ, Galyean RF, Rivier JE, et al. Inhibition of gastric acid secretion by brain peptides in the dog. Role of the autonomic nervous system and gastrin. Gastroenterology 1986;91:905–12.

    PubMed  CAS  Google Scholar 

  11. Skaaring P, Bierring F. On the intrinsic innervation of normal rat liver. Histochemical and scanning electron microscopical studies. Cell Tissue Res 1976;171:141–55.

    Article  PubMed  CAS  Google Scholar 

  12. Sutherland SD. An evaluation of cholineesterase techniques in the study of the intrinsic innervation of the liver. J Anat 1964;98: 321–6.

    PubMed  CAS  Google Scholar 

  13. Kohno T, Mori S, Mito M. Cells of origin innervating the liver and their axonal projections with synaptic terminals into the liver parenchyma in rats. Hokkaido J Med Sei 1987;62:933–46.

    CAS  Google Scholar 

  14. Reilly FD, McCuskey AP, McCuskey RS. Intrahepatic distribution of nerves in the rat. Anat Rec 1978;191:55–67.

    Article  PubMed  CAS  Google Scholar 

  15. Bogach PG, Lyashchenko PS. Changes in bile secretion during hypothalamic stimulation in dogs. In: Problems of the physiology of the hypothalamus. Moscow: Kiev; 1974. p. 56–64.

    Google Scholar 

  16. Cucchiaro G, Yamaguchi Y, Mills E, Kuhn CM, Branum GD, Meyers WC.Evaluation of selective liver denervation methods. Am J Physiol 1990;259:G781–5.

    PubMed  CAS  Google Scholar 

  17. Fritz ME, Brooks FP. Control of bile flow in the cholecystecto- mized dog. Am J Physiol 1963;204:825–8.

    PubMed  CAS  Google Scholar 

  18. Yao CZ, MacLellan DG, Thompson JC. Intracerebroventricular administration of bombesin inhibits biliary and gastric secretion in the rat. J Neurosci Res 1989;22:461–3.

    Article  PubMed  CAS  Google Scholar 

  19. Accatino L, Hono J, Maldonado M, Icarte M, Persico R. Adaptive regulation of hepatic bile salt transport: effect of prolonged bile salt depletion in the rat. J Hepatol 1988;7:215–23.

    Article  PubMed  CAS  Google Scholar 

  20. Erlinger S. Physiology of bile secretion and enterohepatic circulation. In: Johnson LR, Christensen J, Jacobson ED, Walsh JH, editors. Physiology of the gastrointestinal tract. New York: Raven Press; 1987. p. 1557–80.

    Google Scholar 

  21. Beckh K, Mönikes H, Kneip S, Taché Y, Arnold R. Intracisternal injection of a TRH-analogue, RX 77368, stimulates bile flow in anesthetized rats [abstract]. Gastroenterology 1991;100:A629.

    Google Scholar 

  22. Farouk M, Geoghegan JG, Pruthi RS, Thomson HJ, Pappas TN, Meyers WC. Intracerebroventricular neuropeptide Y stimulates bile secretion via a vagal mechanism. Gut 1992;33:1562–5.

    Article  PubMed  CAS  Google Scholar 

  23. Yoneda M, Tamasawa N, Takebe K, Tamori K, Yokohama S, Sato Y, et al. Central neuropeptide Y enhances bile secretion through vagal and muscarinic but not nitric oxide pathways in rats. Peptides 1995;16:727–32.

    Article  PubMed  CAS  Google Scholar 

  24. Tatemoto K, Carlquist M, Mutt V. Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 1982;269:659–60.

    Article  Google Scholar 

  25. Lundberg JM, Terenius L, Hokfelt T, Goldstein M. High levels of neuropeptide Y in peripheral noradrenergic neurons in various mammals, including man. Neurosci Lett 1983;42:167–72.

    Article  PubMed  CAS  Google Scholar 

  26. Allen JM, Gu J, Adrian TE, Polak JM, Bloom SR. Neuropeptide Y in the guinea-pig biliary tract. Experientia 1984;40:765–7.

    Article  PubMed  CAS  Google Scholar 

  27. De Quidt ME, Emson PC. Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system. 2. Immunohistochemical analysis. Neuroscience 1986;18:545–618.

    Article  PubMed  Google Scholar 

  28. Yamazoe M, Shiosaka S, Emson PC, Tohyama M. Distribution of neuropeptide Y in the lower brainstem: an immunohistochemical analysis. Brain Res 1985;335:109–20.

    Article  PubMed  CAS  Google Scholar 

  29. Gillis RA, Quest JA, Pagani FD, Norman WP. Central centers in the central nervous system for regulating gastrointestinal motility. In: Wood JD, editor. Handbook of physiology. Bethesda: American Physiological Society; 1989. p. 621–83.

    Google Scholar 

  30. Geoghegan JG, Lawson DC, Cheng CA, Opara E, Taylor IL, Pappas TN. Intracerebroventricular neuropeptide Y increases gastric and pancreatic secretion in the dog. Gastroenterology 1993;105:1069–77.

    PubMed  CAS  Google Scholar 

  31. Matsuda M, Aono M, Moriga M, Okuma M. Centrally administered NPY stimulated gastric acid and pepsin secretion by a vagally mediated mechanism. Regul Pept 1991;35:31–41.

    Article  PubMed  CAS  Google Scholar 

  32. Moltz JH, McDonald JK. Neuropeptide Y: direct and indirect action on insulin secretion in the rat. Peptides 1985;6:1155–9.

    Article  PubMed  CAS  Google Scholar 

  33. Yoneda M, Yokohama S, Tamori K, Sato Y, Nakamura K, Makino I. Neuropeptide Y in the dorsal vagal complex stimulates bicarbonate-dependent bile secretion in rats. Gastroenterology 1997;112:1673–80.

    Article  PubMed  CAS  Google Scholar 

  34. Gehlert DR. Subtypes of receptors for neuropeptide Y: implications for the targeting of therapeutics. Life Sci 1994;55:551–62.

    Article  PubMed  CAS  Google Scholar 

  35. Bard JA, Walker MW, Branchek TA, Weinshank RL. Cloning and functional expression of a human Y4 subtype receptor for pancreatic polypeptide, neuropeptide Y, and peptide YY. J Biol Chem 1995;270:26762–5.

    Article  PubMed  CAS  Google Scholar 

  36. Weinberg DH, Sirinathsinghji DJ, Tan CP, Shiao LL, Morin N, Rigby MR, et al. Cloning and expression of a novel neuropeptide Y receptor. J Biol Chem 1996;271:16435–8.

    Article  PubMed  CAS  Google Scholar 

  37. Gerald C, Walker MW, Criscione L, Gustafson EL, Batzl HC, Smith KE, et al. A receptor subtype involved in neuropeptide-Y-induced food intake. Nature 1996;382:168–71.

    Article  PubMed  CAS  Google Scholar 

  38. Dumont Y, Fournier A, ST-Pierre S, Quirion R. Autoradiographic distribution of [125I]Leu31, Pro34 PYY and [125I]PYY3–36 binding sites in the rat brain evaluated with two newly developed Yl and Y2 receptor radioligands. Synapse 1996;22:139–58.

    Article  PubMed  CAS  Google Scholar 

  39. Yoneda M, Nakamura K, Yokohama S, Tamori K, Sato Y, Aso K, et al. Neuropeptide Y stimulates bile secretion via Yl receptor in the left dorsal vagal complex in rats. Hepatology 1998;28:670–6.

    Article  PubMed  CAS  Google Scholar 

  40. Carniero JJ, Donald DE. Change in liver blood flow and blood content in dogs during direct and reflex alteration of hepatic sympathetic nerve activity. Circ Res 1977;40:150–8.

    Article  Google Scholar 

  41. Folkow B, Rubinstein E. Behavioral and autonomic patterns evoked by stimulation of the lateral hypothalamic area in the cat. Acta Physiol Scand 1965;65:292–9.

    Article  PubMed  CAS  Google Scholar 

  42. Tsybenko VA, Yanchuk PI. Central nervous control of hepatic circulation. J Auton Nerv Syst 1991;33:255–66.

    Article  PubMed  CAS  Google Scholar 

  43. Taché Y, Stephens RL, Ishikawa T. Central nervous system action of TRH to influence gastrointestinal function and ulceration. Ann NY Acad Sci 1989;553:269–85.

    Article  PubMed  Google Scholar 

  44. Garrick T, Buack S, Veiseh A, Taché Y. Thyrotropin-releasing hormone (TRH) acts centrally to stimulate gastric contractility in rats. Life Sci 1987;40:649–57.

    Article  PubMed  CAS  Google Scholar 

  45. Goto Y, Taché Y. Gastric erosions induced by intracisternal thyrotropin-releasing hormone (TRH) in rats. Peptides 1985;6:153–6.

    Article  PubMed  CAS  Google Scholar 

  46. Maeda-Hagiwara M, Watanabe H. Inhibitory effects of intrahypothalamic injection of calcitonin on TRH-stimulated gastric acid secretion in rats. Jpn J Pharmacol 1985;39:173–8.

    Article  PubMed  CAS  Google Scholar 

  47. Ishikawa T, Yang H, Taché Y. Medullary sites of action of the TRH analogue, RX 77368, for stimulation of gastric acid secretion in the rat. Gastroenterology 1988;95:1470–6.

    PubMed  CAS  Google Scholar 

  48. Stephens RL, Ishikawa T, Weiner H, Novin D, Taché Y. TRH analogue, RX 77368, injected into dorsal vagal complex stimulates gastric secretion in rats. Am J Physiol 1988;254:G639–43.

    PubMed  CAS  Google Scholar 

  49. Yang H, Ishikawa T, Taché Y. Microinjection of TRH analogs into the raphe pallidus stimulates gastric acid secretion in the rat. Brain Res 1990;531:280–5.

    Article  PubMed  CAS  Google Scholar 

  50. Tamori K, Yoneda M, Nakamura K, Makino I. Effect of intracisternal thyrotropin-releasing hormone on hepatic blood flow in rats. Am J Physiol 1998;274:G277–82.

    PubMed  CAS  Google Scholar 

  51. Yoneda M, Tamori K, Nakade Y, Takamoto S, Yokohama S, Aso K, et al. Thyrotropin-releasing hormone (TRH) in the left dorsal vagal complex (DVC) increases the hepatic blood flow in rats [abstract]. Gastroenterology 1998;114:A1194.

    Article  Google Scholar 

  52. Nakade Y, Yoneda M, Takamoto S, Yokohama S, Tamori K, Aso K, et al. Central corticotropin-releasing factor (CRF) decreases the hepatic blood flow in rats [abstract]. Gastroenterology 1998;114:A1168.

    Article  Google Scholar 

  53. Higgins GM, Anderson RM. Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol 1931;12:186–202.

    Google Scholar 

  54. Bucher NLR. Liver regeneration: an overview. J Gastroenterol Hepatol 1991;6:615–24.

    Article  PubMed  CAS  Google Scholar 

  55. Iwai M, Shimazu T. Alteration in sympathetic nerve activity during liver regeneration in rats after partial hepatectomy. J Auton Nerv Syst 1992;41:209–14.

    Article  PubMed  CAS  Google Scholar 

  56. Cruise JL, Knechtle SJ, Bollinger RR, Kuhn C, Michalopoulas G. α-1 adrenergic effects and liver regeneration. Hepatology 1987;7:1189–94.

    Article  PubMed  CAS  Google Scholar 

  57. MacManus JP, Braceland BM, Youdale T, Whitfield JF. Adrenergic antagonists, and a possible link between the increase in cyclic adenosine 3′,5′-monophosphate and DNA synthesis during liver regeneration. J Cell Physiol 1973;82:157–64.

    Article  PubMed  CAS  Google Scholar 

  58. Kato H, Shimazu T. Effect of autonomic denervation on DNA synthesis during liver regeneration after partial hepatectomy. Eur J Biochem 1983;190:473–8.

    Article  Google Scholar 

  59. Yoshimatsu H, Niijima A, Oomura Y, Katafuchi T. Lateral and ventromedial hypothalamic influences on hepatic autonomic nerve activity in the rat. Brain Res Bull 1988;21:239–44.

    Article  PubMed  CAS  Google Scholar 

  60. Ohtake M, Sakaguchi T, Yoshida K, Muto T. Hepatic branch vagotomy can suppress liver regeneration in partially hepatectomized rats. HPB Surgery 1993;6:277–86.

    Article  PubMed  CAS  Google Scholar 

  61. Kiba T, Tanaka K, Endo O, Inoue S. Role of vagus nerve in increased DNA synthesis after hypothalamic ventromedial lesion in rat liver. Am J Physiol 1992;262:G483–7.

    PubMed  CAS  Google Scholar 

  62. Bartolome JV, Bartolome MB, Lorber BA, Dileo SJ, Scanberg SM. Effect of central administration of beta-endorphin on brain and liver DNA synthesis in preweanling rats. Neurosci 1991;40:289–94.

    Article  CAS  Google Scholar 

  63. Yoneda M, Tamori K, Sato Y, Yokohama S, Nakamura K, Makino I. Central thyrotropin-releasing hormone stimulates hepatic DNA synthesis in rats. Hepatology 1997;26:1203–8.

    Article  PubMed  CAS  Google Scholar 

  64. Sato Y, Yoneda M, Yokohama S, Tamori K, Nakamura K, Makino I. Protective effect of central thyrotropin-releasing hormone (TRH) on CCl4-induced liver damage in rats [abstract]. Gastroenterology 1996;110:A1312.

    Article  Google Scholar 

  65. Yokohama S, Yoneda M, Nakamura K, Makino I. Effect of central corticotropin-releasing factor on carbon tetrachloride-induced acute liver injury in rats. Am J Physiol 1999;276:G622–8.

    PubMed  CAS  Google Scholar 

  66. Yang H, Ohning G, Taché Y. TRH in dorsal vagal complex mediates acid response to excitation of raphe pallidus neurons in rats. Am J Physiol 1993;265:G880–6.

    PubMed  CAS  Google Scholar 

  67. Garrick T, Prince M, Yang H, Ohning G, Taché Y. Raphe pallidus stimulation increases gastric contractility via TRH projections to the dorsal vagal complex in rats. Brain Res 1994;636:343–7.

    Article  PubMed  CAS  Google Scholar 

  68. Yoneda M, Ohning G, Tamori K, Nakade Y, Takamoto S, Yokohama S, et al. Endogeous thyrotropin-releasing hormone (TRH) in the medulla stimulates the hepatic blood flow in rats [abstract]. Gastroenterology 2000;118:A431.

    Article  Google Scholar 

  69. Nakade Y, Yoneda M, Nakamura K, Makino I, Terano A. Involvement of endogenous corticotropin-releasing factor in carbon tetrachloride-induced acute liver injury in rats. Am J Physiol 2002;282:R1782–8.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoneda, M., Kurosawa, M., Watanobe, H. et al. Brain-gut axis of the liver: the role of central neuropeptides. J Gastroenterol 37 (Suppl 14), 151–156 (2002). https://doi.org/10.1007/BF03326435

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326435

Keywords

Navigation