Journal of Gastroenterology

, Volume 37, Supplement 14, pp 151–156 | Cite as

Brain-gut axis of the liver: the role of central neuropeptides

  • Masashi Yoneda
  • Mieko Kurosawa
  • Hajime Watanobe
  • Tadahito Shimada
  • Akira Terano
Brain-gut relations, basics and clinics, from the viewpoint of neurogastroenterology


peptide liver central nervous system autonomie nervous system vagus sympathetic nerve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pavlov I. The work of the digestive glands [English translation]. London: C. Griffin; 1910.Google Scholar
  2. 2.
    Selye H. Syndrome produced by diverse noctious agents. Nature 1932;138:32.CrossRefGoogle Scholar
  3. 3.
    Brooks FP. Central neural control of acid secretion. In: Code CF, editor. Handbook of physiology. Washington, DC: American Physiological Society; 1967. p. 805.Google Scholar
  4. 4.
    Krieger DT. Brain peptides: what, where and why? Science 1983;222:975–85.PubMedCrossRefGoogle Scholar
  5. 5.
    Leslie RA. Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus. Neurochem Int 1985;7:191–211.PubMedCrossRefGoogle Scholar
  6. 6.
    Swanson LW, Sawchenko PE. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 1983;6:269–324.PubMedCrossRefGoogle Scholar
  7. 7.
    Taché Y, Vale W, Bown M. Thyrotropin-releasing hormone—CNS action to stimulate gastric acid secretion. Nature 1980;287:149–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Taché Y, Vale W, Rivier J, Brown M. Brain regulation of gastric secretion: influence of neuropeptides. Proc Natl Acad Sei USA 1980;77:5515–9.CrossRefGoogle Scholar
  9. 9.
    Taché Y, Maeda-Hagiwara M, Turkelson CM. Central nervous system action of corticotropin-releasing factor to inhibit gastric emptying in rats. Am J Physiol 1987;253:G241–5.PubMedGoogle Scholar
  10. 10.
    Lenz HJ, Klapdor R, Hester SE, Webb VJ, Galyean RF, Rivier JE, et al. Inhibition of gastric acid secretion by brain peptides in the dog. Role of the autonomic nervous system and gastrin. Gastroenterology 1986;91:905–12.PubMedGoogle Scholar
  11. 11.
    Skaaring P, Bierring F. On the intrinsic innervation of normal rat liver. Histochemical and scanning electron microscopical studies. Cell Tissue Res 1976;171:141–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Sutherland SD. An evaluation of cholineesterase techniques in the study of the intrinsic innervation of the liver. J Anat 1964;98: 321–6.PubMedGoogle Scholar
  13. 13.
    Kohno T, Mori S, Mito M. Cells of origin innervating the liver and their axonal projections with synaptic terminals into the liver parenchyma in rats. Hokkaido J Med Sei 1987;62:933–46.Google Scholar
  14. 14.
    Reilly FD, McCuskey AP, McCuskey RS. Intrahepatic distribution of nerves in the rat. Anat Rec 1978;191:55–67.PubMedCrossRefGoogle Scholar
  15. 15.
    Bogach PG, Lyashchenko PS. Changes in bile secretion during hypothalamic stimulation in dogs. In: Problems of the physiology of the hypothalamus. Moscow: Kiev; 1974. p. 56–64.Google Scholar
  16. 16.
    Cucchiaro G, Yamaguchi Y, Mills E, Kuhn CM, Branum GD, Meyers WC.Evaluation of selective liver denervation methods. Am J Physiol 1990;259:G781–5.PubMedGoogle Scholar
  17. 17.
    Fritz ME, Brooks FP. Control of bile flow in the cholecystecto- mized dog. Am J Physiol 1963;204:825–8.PubMedGoogle Scholar
  18. 18.
    Yao CZ, MacLellan DG, Thompson JC. Intracerebroventricular administration of bombesin inhibits biliary and gastric secretion in the rat. J Neurosci Res 1989;22:461–3.PubMedCrossRefGoogle Scholar
  19. 19.
    Accatino L, Hono J, Maldonado M, Icarte M, Persico R. Adaptive regulation of hepatic bile salt transport: effect of prolonged bile salt depletion in the rat. J Hepatol 1988;7:215–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Erlinger S. Physiology of bile secretion and enterohepatic circulation. In: Johnson LR, Christensen J, Jacobson ED, Walsh JH, editors. Physiology of the gastrointestinal tract. New York: Raven Press; 1987. p. 1557–80.Google Scholar
  21. 21.
    Beckh K, Mönikes H, Kneip S, Taché Y, Arnold R. Intracisternal injection of a TRH-analogue, RX 77368, stimulates bile flow in anesthetized rats [abstract]. Gastroenterology 1991;100:A629.Google Scholar
  22. 22.
    Farouk M, Geoghegan JG, Pruthi RS, Thomson HJ, Pappas TN, Meyers WC. Intracerebroventricular neuropeptide Y stimulates bile secretion via a vagal mechanism. Gut 1992;33:1562–5.PubMedCrossRefGoogle Scholar
  23. 23.
    Yoneda M, Tamasawa N, Takebe K, Tamori K, Yokohama S, Sato Y, et al. Central neuropeptide Y enhances bile secretion through vagal and muscarinic but not nitric oxide pathways in rats. Peptides 1995;16:727–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Tatemoto K, Carlquist M, Mutt V. Neuropeptide Y—a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 1982;269:659–60.CrossRefGoogle Scholar
  25. 25.
    Lundberg JM, Terenius L, Hokfelt T, Goldstein M. High levels of neuropeptide Y in peripheral noradrenergic neurons in various mammals, including man. Neurosci Lett 1983;42:167–72.PubMedCrossRefGoogle Scholar
  26. 26.
    Allen JM, Gu J, Adrian TE, Polak JM, Bloom SR. Neuropeptide Y in the guinea-pig biliary tract. Experientia 1984;40:765–7.PubMedCrossRefGoogle Scholar
  27. 27.
    De Quidt ME, Emson PC. Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system. 2. Immunohistochemical analysis. Neuroscience 1986;18:545–618.PubMedCrossRefGoogle Scholar
  28. 28.
    Yamazoe M, Shiosaka S, Emson PC, Tohyama M. Distribution of neuropeptide Y in the lower brainstem: an immunohistochemical analysis. Brain Res 1985;335:109–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Gillis RA, Quest JA, Pagani FD, Norman WP. Central centers in the central nervous system for regulating gastrointestinal motility. In: Wood JD, editor. Handbook of physiology. Bethesda: American Physiological Society; 1989. p. 621–83.Google Scholar
  30. 30.
    Geoghegan JG, Lawson DC, Cheng CA, Opara E, Taylor IL, Pappas TN. Intracerebroventricular neuropeptide Y increases gastric and pancreatic secretion in the dog. Gastroenterology 1993;105:1069–77.PubMedGoogle Scholar
  31. 31.
    Matsuda M, Aono M, Moriga M, Okuma M. Centrally administered NPY stimulated gastric acid and pepsin secretion by a vagally mediated mechanism. Regul Pept 1991;35:31–41.PubMedCrossRefGoogle Scholar
  32. 32.
    Moltz JH, McDonald JK. Neuropeptide Y: direct and indirect action on insulin secretion in the rat. Peptides 1985;6:1155–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Yoneda M, Yokohama S, Tamori K, Sato Y, Nakamura K, Makino I. Neuropeptide Y in the dorsal vagal complex stimulates bicarbonate-dependent bile secretion in rats. Gastroenterology 1997;112:1673–80.PubMedCrossRefGoogle Scholar
  34. 34.
    Gehlert DR. Subtypes of receptors for neuropeptide Y: implications for the targeting of therapeutics. Life Sci 1994;55:551–62.PubMedCrossRefGoogle Scholar
  35. 35.
    Bard JA, Walker MW, Branchek TA, Weinshank RL. Cloning and functional expression of a human Y4 subtype receptor for pancreatic polypeptide, neuropeptide Y, and peptide YY. J Biol Chem 1995;270:26762–5.PubMedCrossRefGoogle Scholar
  36. 36.
    Weinberg DH, Sirinathsinghji DJ, Tan CP, Shiao LL, Morin N, Rigby MR, et al. Cloning and expression of a novel neuropeptide Y receptor. J Biol Chem 1996;271:16435–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Gerald C, Walker MW, Criscione L, Gustafson EL, Batzl HC, Smith KE, et al. A receptor subtype involved in neuropeptide-Y-induced food intake. Nature 1996;382:168–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Dumont Y, Fournier A, ST-Pierre S, Quirion R. Autoradiographic distribution of [125I]Leu31, Pro34 PYY and [125I]PYY3–36 binding sites in the rat brain evaluated with two newly developed Yl and Y2 receptor radioligands. Synapse 1996;22:139–58.PubMedCrossRefGoogle Scholar
  39. 39.
    Yoneda M, Nakamura K, Yokohama S, Tamori K, Sato Y, Aso K, et al. Neuropeptide Y stimulates bile secretion via Yl receptor in the left dorsal vagal complex in rats. Hepatology 1998;28:670–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Carniero JJ, Donald DE. Change in liver blood flow and blood content in dogs during direct and reflex alteration of hepatic sympathetic nerve activity. Circ Res 1977;40:150–8.CrossRefGoogle Scholar
  41. 41.
    Folkow B, Rubinstein E. Behavioral and autonomic patterns evoked by stimulation of the lateral hypothalamic area in the cat. Acta Physiol Scand 1965;65:292–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Tsybenko VA, Yanchuk PI. Central nervous control of hepatic circulation. J Auton Nerv Syst 1991;33:255–66.PubMedCrossRefGoogle Scholar
  43. 43.
    Taché Y, Stephens RL, Ishikawa T. Central nervous system action of TRH to influence gastrointestinal function and ulceration. Ann NY Acad Sci 1989;553:269–85.PubMedCrossRefGoogle Scholar
  44. 44.
    Garrick T, Buack S, Veiseh A, Taché Y. Thyrotropin-releasing hormone (TRH) acts centrally to stimulate gastric contractility in rats. Life Sci 1987;40:649–57.PubMedCrossRefGoogle Scholar
  45. 45.
    Goto Y, Taché Y. Gastric erosions induced by intracisternal thyrotropin-releasing hormone (TRH) in rats. Peptides 1985;6:153–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Maeda-Hagiwara M, Watanabe H. Inhibitory effects of intrahypothalamic injection of calcitonin on TRH-stimulated gastric acid secretion in rats. Jpn J Pharmacol 1985;39:173–8.PubMedCrossRefGoogle Scholar
  47. 47.
    Ishikawa T, Yang H, Taché Y. Medullary sites of action of the TRH analogue, RX 77368, for stimulation of gastric acid secretion in the rat. Gastroenterology 1988;95:1470–6.PubMedGoogle Scholar
  48. 48.
    Stephens RL, Ishikawa T, Weiner H, Novin D, Taché Y. TRH analogue, RX 77368, injected into dorsal vagal complex stimulates gastric secretion in rats. Am J Physiol 1988;254:G639–43.PubMedGoogle Scholar
  49. 49.
    Yang H, Ishikawa T, Taché Y. Microinjection of TRH analogs into the raphe pallidus stimulates gastric acid secretion in the rat. Brain Res 1990;531:280–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Tamori K, Yoneda M, Nakamura K, Makino I. Effect of intracisternal thyrotropin-releasing hormone on hepatic blood flow in rats. Am J Physiol 1998;274:G277–82.PubMedGoogle Scholar
  51. 51.
    Yoneda M, Tamori K, Nakade Y, Takamoto S, Yokohama S, Aso K, et al. Thyrotropin-releasing hormone (TRH) in the left dorsal vagal complex (DVC) increases the hepatic blood flow in rats [abstract]. Gastroenterology 1998;114:A1194.CrossRefGoogle Scholar
  52. 52.
    Nakade Y, Yoneda M, Takamoto S, Yokohama S, Tamori K, Aso K, et al. Central corticotropin-releasing factor (CRF) decreases the hepatic blood flow in rats [abstract]. Gastroenterology 1998;114:A1168.CrossRefGoogle Scholar
  53. 53.
    Higgins GM, Anderson RM. Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch Pathol 1931;12:186–202.Google Scholar
  54. 54.
    Bucher NLR. Liver regeneration: an overview. J Gastroenterol Hepatol 1991;6:615–24.PubMedCrossRefGoogle Scholar
  55. 55.
    Iwai M, Shimazu T. Alteration in sympathetic nerve activity during liver regeneration in rats after partial hepatectomy. J Auton Nerv Syst 1992;41:209–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Cruise JL, Knechtle SJ, Bollinger RR, Kuhn C, Michalopoulas G. α-1 adrenergic effects and liver regeneration. Hepatology 1987;7:1189–94.PubMedCrossRefGoogle Scholar
  57. 57.
    MacManus JP, Braceland BM, Youdale T, Whitfield JF. Adrenergic antagonists, and a possible link between the increase in cyclic adenosine 3′,5′-monophosphate and DNA synthesis during liver regeneration. J Cell Physiol 1973;82:157–64.PubMedCrossRefGoogle Scholar
  58. 58.
    Kato H, Shimazu T. Effect of autonomic denervation on DNA synthesis during liver regeneration after partial hepatectomy. Eur J Biochem 1983;190:473–8.CrossRefGoogle Scholar
  59. 59.
    Yoshimatsu H, Niijima A, Oomura Y, Katafuchi T. Lateral and ventromedial hypothalamic influences on hepatic autonomic nerve activity in the rat. Brain Res Bull 1988;21:239–44.PubMedCrossRefGoogle Scholar
  60. 60.
    Ohtake M, Sakaguchi T, Yoshida K, Muto T. Hepatic branch vagotomy can suppress liver regeneration in partially hepatectomized rats. HPB Surgery 1993;6:277–86.PubMedCrossRefGoogle Scholar
  61. 61.
    Kiba T, Tanaka K, Endo O, Inoue S. Role of vagus nerve in increased DNA synthesis after hypothalamic ventromedial lesion in rat liver. Am J Physiol 1992;262:G483–7.PubMedGoogle Scholar
  62. 62.
    Bartolome JV, Bartolome MB, Lorber BA, Dileo SJ, Scanberg SM. Effect of central administration of beta-endorphin on brain and liver DNA synthesis in preweanling rats. Neurosci 1991;40:289–94.CrossRefGoogle Scholar
  63. 63.
    Yoneda M, Tamori K, Sato Y, Yokohama S, Nakamura K, Makino I. Central thyrotropin-releasing hormone stimulates hepatic DNA synthesis in rats. Hepatology 1997;26:1203–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Sato Y, Yoneda M, Yokohama S, Tamori K, Nakamura K, Makino I. Protective effect of central thyrotropin-releasing hormone (TRH) on CCl4-induced liver damage in rats [abstract]. Gastroenterology 1996;110:A1312.CrossRefGoogle Scholar
  65. 65.
    Yokohama S, Yoneda M, Nakamura K, Makino I. Effect of central corticotropin-releasing factor on carbon tetrachloride-induced acute liver injury in rats. Am J Physiol 1999;276:G622–8.PubMedGoogle Scholar
  66. 66.
    Yang H, Ohning G, Taché Y. TRH in dorsal vagal complex mediates acid response to excitation of raphe pallidus neurons in rats. Am J Physiol 1993;265:G880–6.PubMedGoogle Scholar
  67. 67.
    Garrick T, Prince M, Yang H, Ohning G, Taché Y. Raphe pallidus stimulation increases gastric contractility via TRH projections to the dorsal vagal complex in rats. Brain Res 1994;636:343–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Yoneda M, Ohning G, Tamori K, Nakade Y, Takamoto S, Yokohama S, et al. Endogeous thyrotropin-releasing hormone (TRH) in the medulla stimulates the hepatic blood flow in rats [abstract]. Gastroenterology 2000;118:A431.CrossRefGoogle Scholar
  69. 69.
    Nakade Y, Yoneda M, Nakamura K, Makino I, Terano A. Involvement of endogenous corticotropin-releasing factor in carbon tetrachloride-induced acute liver injury in rats. Am J Physiol 2002;282:R1782–8.Google Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Masashi Yoneda
    • 1
    • 2
  • Mieko Kurosawa
    • 2
  • Hajime Watanobe
    • 2
  • Tadahito Shimada
    • 1
  • Akira Terano
    • 1
  1. 1.Department of GastroenterologyDokkyo University School of MedicineTochigiJapan
  2. 2.Basic and Clinical Research CenterInternational University of Health and WelfareOtawaraJapan

Personalised recommendations