Journal of Gastroenterology

, Volume 37, Supplement 14, pp 1–6 | Cite as

Regulation of epithelial cell functions by the intestinal milieu

  • Tadao Bamba
Special contribution


intraluminal substrate intestinal epithelium adaptation proliferation cytokine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bamba T. Reesterification of medium-chain triglycerides in mucosal cells during their intestinal absorption. Jpn J Intern Med 1970;59:1185–94.CrossRefGoogle Scholar
  2. 2.
    Dudrick SJ, Wilmore DW, Vars HM, Rhoads JE. Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Surgery 1968;64:134–42.PubMedGoogle Scholar
  3. 3.
    Ogoshi S, Sato H. New preparations of the elemental diet and the clinical application. Jpn J Surg 1981;11:391–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Sasaki M, Bamba T, Hosoda S. Effect of oligopeptides as intraluminal substrates upon brush border aminopeptidase and cytosol peptidase activities. Nippon Shokakibyo Gakkai Zasshi 1986;83:645–55.PubMedGoogle Scholar
  5. 5.
    Obata H, Bamba T, Hosoda S. Effect on uptake of D-glucose, l-leucine and L-leucylglycine into intestinal brush border membrane vesicles isolated from rats fed either oligopeptide or amino acid elemental diet. Nippon Shokakibyo Gakkai Zasshi 1989;86:865–75.PubMedGoogle Scholar
  6. 6.
    Hosoda T, Bamba T, Hosoda S. Ileal absorption of various amino acids and dipeptides in rats administered cyclophosphamide using the short-circuit current method. Nippon Shokakibyo Gakkai Zasshi 1991;88:2837–46.PubMedGoogle Scholar
  7. 7.
    Ihara T, Tsujikawa T, Fujiyama Y, Bamba T. Regulation of PepTl peptide transporter expression in the rat small intestine under malnourished conditions. Digestion 2000;61:59–67.PubMedCrossRefGoogle Scholar
  8. 8.
    Ihara T, Tsujikawa T, Fujiyama Y, Ueyama H, Ohkubo I, Bamba T. Enhancement of brush border membrane peptidase activity in rat jejunum induced by starvation. Pflugers Arch 2000;440:75–83.PubMedGoogle Scholar
  9. 9.
    O’Sullivan MA, O’Morain CA. Nutritional therapy in Crohn’s disease. Inflamm Bowel Dis 1998;4:45–53.PubMedCrossRefGoogle Scholar
  10. 10.
    O’Morain C, Segal AW, Levi AJ. Elemental diet as primary treatment of acute Crohn’s disease. BMJ 1984;288:1859–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Saverymuss S, Hodgson HJF, Chadwick VS. Controlled trial comparing prednisolone with an enterai diet plus non-absorbable antibiotics in active Crohn’s disease. Gut 1985;26:994–8.CrossRefGoogle Scholar
  12. 12.
    Andoh A, Takaya H, Araki Y, Tsujikawa T, Fujiyama Y, Bamba T. Medium and long-chain fatty acids differentially modulate interleukin-8 secretion in human fetal intestinal epithelial cells. J Nutr 2000;130:2636–40.PubMedGoogle Scholar
  13. 13.
    Tsujikawa T, Ohta N, Nakamura T, Yasuoka T, Satoh J, Fukunaga T, et al. Medium-chain triglyceride-rich enterai nutrition is more effective than low-fat enterai nutrition in rat colitis, but is equal in enteritis. J Gastroenterol 2001;36:673–80.PubMedCrossRefGoogle Scholar
  14. 14.
    Araki Y, Fujiyama Y, Andoh A, Nakamura F, Shimada M, Takaya H, et al. Hydrophilic and hydrophobic bile acids exhibit different cytotoxicities through cytolysis, interleukin-8 synthesis and apoptosis in the intestinal epithelial cell lines. IEC-6 and Caco-2 cells. Scand J Gastroenterol 2001;36:533–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S. Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem 1997;61:1582–4.PubMedCrossRefGoogle Scholar
  16. 16.
    Bamba T, Vaja S, Murphy GM, Dowling RH. Role of polyamines in the early adaptive response to jejunectomy in the rat: effect of DFMO on the ileal villus-crypt axis. Digestion 1990;46 (Suppl 2):410–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Bamba T, Vaja S, Murphy GM, Dowling RH. Effect of fasting and feeding on polyamines and related enzymes along the villus: crypt axis. Digestion 1990;46 (Suppl 2):424–9PubMedCrossRefGoogle Scholar
  18. 18.
    Uda K, Tsujikawa T, Ihara T, Fujiyama Y, Bamba T. Luminal polyamines upregulate transmural glucose transport in the rat small intestine. J Gastroenterol 2001 in press.Google Scholar
  19. 19.
    Tsujikawa T, Itoh A, Saotome T, Yasuoka T, Fukunaga T, Satoh J, et al. The regulation of aquaporin expression on the mucosa after small bowel resection and epithelial cell line. Digestion Absorption 2000;23:26–8.Google Scholar
  20. 20.
    Cummings JH. Short-chain fatty acids in the human colon. Gut 1981;22:763–79.PubMedCrossRefGoogle Scholar
  21. 21.
    Roediger WE. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 1980;21:793–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Andoh A, Fujiyama Y, Hata K, Araki Y, Takaya H, Shimada M, et al. Counter-regulatory effect of sodium butyrate on tumour necrosis factor-alpha (TNF-alpha)-induced complement C3 and factor B biosynthesis in human intestinal epithelial cells. Clin Exp Immunol 1999;118:23–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Andoh A, Bamba T, Sasaki M. Physiological and antiinflammatory roles of dietary fiber and butyrate in intestinal functions. J Parenteral Enterai Nutr 1999;23(Suppl 5):S70–3.CrossRefGoogle Scholar
  24. 24.
    Kanauchi O, Andoh A, Iwanaga T, Fujiyama Y, Mitsuyama K, Toyonaga A, et al. Germinated barley foodstuffs attenuate co-Ionic mucosal damage and mucosal nuclear factor kappa B activity in a spontaneous colitis model. J Gastroenterol Hepatol 1999;14:1173–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Araki Y, Andoh A, Koyama S, Fujiyama Y, Kanauchi O, Bamba T. Effects of germinated barley foodstuff on microflora and short-chain fatty acid production in dextran sulfate sodium-induced colitis in rats. Biosci Biotechnol Biochem 2000;64:1794–800.PubMedCrossRefGoogle Scholar
  26. 26.
    Araki Y, Fujiyama Y, Andoh A, Koyama S, Kanauchi O, Bamba T. The dietary combination of germinated barley foodstuff plus Clostridium butyricum suppresses the dextran sulfate sodium-in-duced experimental colitis in rats. Scand J Gastroenterol 2000;35:1060–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human β2m: an animal model of HLA-B27-associated human disorders. Cell 1990;63:1099–112.PubMedCrossRefGoogle Scholar
  28. 28.
    Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994;180:2359–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Taurog JD, Maika SD, Simmons WA, Breban M, Hammer RE. Susceptibility to inflammtory disease in HLA-B27 transgenic rat lines correlates with the level of B27 expression. J Immunol 1993;150:4168–78.PubMedGoogle Scholar
  30. 30.
    Hata K, Andoh A, Sato H, Araki Y, Tanaka M, Tsujikawa T, et al. Sequential changes in luminal microflora and mucosal cytokine expression during developing colitis in HLA-B27/beta-2-microglobulin transgenic rats. Scand J Gastroenterol 2001;36:1185–92.PubMedCrossRefGoogle Scholar
  31. 31.
    Matsuda H, Fujiyama Y, Andoh A, Ushijima T, Kajinami T, Bamba T. Characterization of antibody responses against rectal mucosa-associated bacterial flora in patients with ulcerative colitis. J Gastroenterol Hepatol 2000;15:61–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Ogawa H, Fukushima K, Sasaki I, Matsuno S. Identification of genes involved in mucosal defense and inflammation associated with normal enteric bacteria. Am J Physiol Gastrointest Liver Physiol 2000;279:G492–9.PubMedGoogle Scholar
  33. 33.
    Andoh A, Fujiyama Y, Bamba T, Hosoda S. Differential cytokine regulation of complement C3, C4, and factor B synthesis in human intestinal epithelial cell line, Caco-2. J Immunol 1993;151:4239–47.PubMedGoogle Scholar
  34. 34.
    Andoh A, Fujiyama Y, Bamba T, Hosoda S, Brown WR. Complement component C3 production and its cytokine regulation by gastrointestinal epithelial cells. Adv Exp Med Biol 1995;371A:211–5.PubMedCrossRefGoogle Scholar
  35. 35.
    Andoh A, Fujiyama Y, Hata K, Sumiyoshi K, Bamba T. Regulation of complement C3 synthesis by interleukin-1 and transforming growth factor-beta in rat non-transformed intestinal epithelial cell line, IEC-6. J Gastroenterol 1996;31:633–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Andoh A, Fujiyama Y, Sakumoto H, Uchihara H, Kimura T, Koyama S, et al. Detection of complement C3 and factor B gene expression in normal colorectal mucosa, adenomas and carcinomas. Clin Exp Immunol 1998;111:477–83.PubMedCrossRefGoogle Scholar
  37. 37.
    Andoh A, Fujiyama Y, Sumiyoshi K, Sakumoto H, Bamba T. Interleukin 4 acts as an inducer of decay-accelerating factor gene expression in human intestinal epithelial cells. Gastroenterology 1996;111:911–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Andoh A, Fujiyama Y, Sumiyoshi K, Sakumoto H, Okabe H, Bamba T. Tumour necrosis factor-alpha up-regulates decay-accelerating factor gene expression in human intestinal epithelial cells. Immunology 1997;90:358–63.PubMedCrossRefGoogle Scholar
  39. 39.
    Andoh A, Kinoshita K, Rosenberg I, Podolsky DK. Intestinal trefoil factor induces decay-accelerating factor expression and enhances the protective activities against complement activation in intestinal epithelial cells. J Immunol 2001;167:3887–93.PubMedGoogle Scholar
  40. 40.
    Andoh A, Saotome T, Sato H, Tsujikawa T, Araki Y, Fujiyama Y, et al. Epithelial expression of caveolin-2, but not caveolin-1, is enhanced in the inflamed mucosa of patients with ulcerative colitis. Inflamm Bowel Dis 2001;7:210–4.PubMedCrossRefGoogle Scholar
  41. 41.
    Fossiez F, Banchereau J, Murry R, van Kooten C, Garrone P, Lebecque S. Interleukin-17. Intern Rev Immunol 1998;16:541–51.CrossRefGoogle Scholar
  42. 42.
    Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff M, Spriggs MK, et al. Human IL-17: a novel cytokine derived from T cells. J Immunol 1995;155:5483–6.PubMedGoogle Scholar
  43. 43.
    Kennedy J, Rossi DL, Zurawski SM, Vega F, Kastelein RA, Wagner JL, et al. Mouse IL-17: a cytokine preferentially expressed by TCR+CD4-CD8- T cells. J Interferon Cytokine Res 1996;16:611–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Albanesi C, Scarponi C, Cavani A, Federici M, Nasorri F, Girolomoni G. Interleukin-17 is produced by both Thl and Th2 lymphocytes, and modulates interferon-g- and interleukin-4-in-duced activation of human keratinocytes. J Invest Dermatol 2000;115:81–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Shin HC, Benbernou N, Esnault S, Guenounou M. Expression of IL-17 in human memory CD45RO+ T lymphocytes and its regulation by protein kinase A pathway. Cytokine 1999;11:257–66.PubMedCrossRefGoogle Scholar
  46. 46.
    Shimada M, Andoh A, Hata K, Tasaki K, Araki Y, Fujiyama Y, et al. IL-6 secretion by human pancreatic periacinar myofibroblasts in response to inflammatory mediators. J Immunol 2002;168:861–8.PubMedGoogle Scholar
  47. 47.
    Andoh A, Takaya H, Makino J, Sato H, Bamba S, Araki Y, et al. Cooperation of interleukin-17 and interferon-γ on chemokine secretion in human fetal intestinal epithelial cells, Clin Exp Immunol 2001;125:56–63.PubMedCrossRefGoogle Scholar
  48. 48.
    Okuno T, Andoh A, Bamba S, Araki Y, Fujiyama Y, Fujimiya M, et al. Interleukin-1β and tumor necrosis factor-α induce chemokine and matrix metalloproteinase gene expression in human colonic subepithelial myofibroblasts. Scand J Gastroenterol in press.Google Scholar
  49. 49.
    Hata K, Andoh A, Shimada M, Fujino S, Bamba S, Araki Y, et al. IL-17 stimulates inflammatory responses via NF-kB and MAP kinase pathways in human colonic subepithelial myofibroblasts. Am J Physiol (Gastrointest Liver Physiol) in press.Google Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Tadao Bamba
    • 1
  1. 1.The 43rd Annual Meeting of the Japanese Society of GastroenterologyShiga University of Medical ScienceOtsuJapan

Personalised recommendations