Advertisement

Comparative plant growth promoting traits and distribution of rhizobacteria associated with heavy metals in contaminated soils

  • M. R. Melo
  • N. R. Flores
  • S. V. Murrieta
  • A. R. Tovar
  • A. G. Zúñiga
  • O. F. Hernández
  • A. P. Mendoza
  • N. O. Pérez
  • A. R. Dorantes
Article

Abstract

The heavy metals at high concentration are generally toxic to the plants for their metabolism and growth; therefore, interactions among metals, rhizosphere microbes and plants have attracted attention because of the biotechnological potential of microorganisms for metal removal directly from contaminated soils or the possible transference of them to the plants. The aim of this study was to compare the relationships between the physiological in vitro characteristics of rhizobacteria isolated from plant metal accumulators and their distribution relating with the heavy metals content in contaminated soils. The results of this study showed that the heavy metals present in the rhizosphere of the plant species analyzed, decrease the microbial biomass and content of heavy metals caused a different distribution of rhizobacteria found. Gram negative rhizobacteria (90 %) and gram positive rhizobacteria (10 %) were isolated; all of them are metal-resistant rhizobacteria and 50 % of the isolated rhizobacteria possess both traits: higher indol acetic acid and siderophore producers. The inoculation with these rhizosphere microorganisms that possess metal-tolerating ability and plant growth promoting activities, can be recommended with a practical importance for both metal-contaminated environment and plant growth promotion.

Keywords

Phytohormones Phytoremediation Plant growth-promoting rhizobacteria Siderophores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abaye, D. A.; Lawlor, K.; Hirsch, P. R.; Brookes, P. C., (2005). Changes in the microbial community of an arable soil caused by long-term metal contamination. Eur. J. Soil Sci., 56(1), 93–102 (10 pages).CrossRefGoogle Scholar
  2. Abou-Shanab, R. A.; Angle, J. S.; Delorme, T. A.; Chaney, R. L.; van Berkum, P.; Moawad, H.; Ghanem, K.; Ghozlan, H. A., (2003). Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale, New Phytol., 158(1), 219–224 (6 pages).CrossRefGoogle Scholar
  3. Aceves, J., (2003). GraphPad Software. GraphPad InStat, V2.03Google Scholar
  4. Ahmad, F.; Ahmad, I.; Khan, M. S., (2005). Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk. J. Biol., 29(1), 29–34 (6 pages).Google Scholar
  5. Ahmad, F.; Ahmad, I.; Khan, M. S., (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res., 163(2), 173–181 (9 pages).CrossRefGoogle Scholar
  6. Allers, T.; Lichen, M., (2000). A method for preparing genomic DNA that restrains branch migration of Holiday junctions. Nucl. Aci. Res., 28(2), 26–36 (11 pages).CrossRefGoogle Scholar
  7. Barazani, O. Z.; Friedman, J., (1999). Is IAA the major root growth factor secreted from plant-growth-mediating bacteria. J. Chem. Ecol., 25(10), 2397–2406 (10 pages).CrossRefGoogle Scholar
  8. Belimov, A. A.; Hontzeas, N.; Safronova, V. I.; Demchinskaya, S. V.; Piluzza, G.; Bullitta, S.; Glick, B. R., (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea LCzern.). Soil Biol. Biochem., 37(2), 241–250 (10 pages).CrossRefGoogle Scholar
  9. Black, R. C.; Choate, D. M.; Bardhan, S.; Revis, N.; Barton, L. L.; Zocco, T. G., (1993). Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ. Toxicol. Chem., 12(8), 1365–1376 (12 pages).Google Scholar
  10. Bremer, P.J.; Geasey, G.G., (1993). Interactions of bacteria with metals in the aquatic environment. in: Rao, S.S. (Ed.), Particulate Matter and Aquatic Contaminants. Lewis Publishers, Boca Raton.Google Scholar
  11. Bric, J. M.; Bostock, R. M.; Silversone, S. E., (1991). Rapid in situ assay for indole acetic acid production by bacteria immobilization on a nitrocellulose membrane. Appl. Environ. Microbiol., 57(2), 535–538 (4 pages).Google Scholar
  12. Burd, G. I.; Dixon, D. G.; Glick. B. R., (1998). A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol., 64(10), 3663–3668 (6 pages).Google Scholar
  13. Burd G. I.; Dixon, D. G.; Glick. B. R., (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol., 46(3), 237–245 (9 pages).CrossRefGoogle Scholar
  14. Churchill, S. A.; Walters, J. V.; Churchill, P. F., (1995). Sorption of heavy metals by prepared bacterial cell surfaces. J. Environ. Eng., 121(10), 706–711 (6 pages).CrossRefGoogle Scholar
  15. Clarke, S. E.; Stuart, J.; Sandersloehr, J., (1987). Induction of siderophore activity in Anabaena species and its moderation of copper toxicity. Appl. Environ. Microbiol., 53(5), 917–922 (6 pages).Google Scholar
  16. Dell’ Amico, H.; Cavalca, L.; Andreoni, V., (2005). Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS. Microbiol. Ecol., 52(2), 153–162 (10 pages).CrossRefGoogle Scholar
  17. Dell’Amico, H.; Cavalca, L.; Andreoni, V., (2008). Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol. Biochem., 40(1), 74–84 (11 pages).CrossRefGoogle Scholar
  18. De Souza, M. P.; Huang, C. P. A.; Chee, N.; Terry, N., (1999). Rhizosphere bacteria enhance that accumulation of selenium and mercury in wetland plants. Planta, 209(2), 259–263 (5 pages).CrossRefGoogle Scholar
  19. Egamberdiyeva, D.; Hoflich, G., (2004). Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J. Arid Environ., 56(2), 293–301 (9 pages).CrossRefGoogle Scholar
  20. Epelde L.; Becerril, J. M.; Barrutia, O.; González-Oreja, J. A.; Garbisu, C., (2010). Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environ. Poll., 158(5), 1576–1583 (8 pages).CrossRefGoogle Scholar
  21. Erbe, J. L.; Taylor, K. B.; Hall, L. M., (1995). Metalloregulation of the cyanobacterial smt locus: identification of the smtB binding sites and direct interaction with metals. Nucl. Acid Res., 23(13), 2472–2478 (7 pages).CrossRefGoogle Scholar
  22. Franco-Hernández, M. O.; Vásquez-Murrieta, M. S.; Patiño-Siciliano, A.; Dendooven, L., (2010). Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresour. Tech., 101(11), 3864–3869 (6 pages).CrossRefGoogle Scholar
  23. Frostegård, A.; Tunlid, A.; Bååth, E., (1993). Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol., 59(11), 3605–3617 (13 pages).Google Scholar
  24. Gadd, G. M., (1990). Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46(8), 834–840 (7 pages).CrossRefGoogle Scholar
  25. Glick, B. R.; Penrose, D. M.; Li, J., (1998). A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol., 190(1), 63–68 (6 pages).CrossRefGoogle Scholar
  26. Glick, B. R., (2003). Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotech. Adv., 21(5), 383–393 (11 pages).CrossRefGoogle Scholar
  27. Guo, L.; Andrews, J.; Riding, R.; Dennis, P.; Dresser, Q., (1996). Possible microbial effects on stable carbon isotopes in hot-spring travertines. J. Sediment. Res., 66(3), 468–473 (6 pages).CrossRefGoogle Scholar
  28. Idris, R.; Trifonova, M.; Puschenreiter, W.; Wenzel, W.; Sessitsch, A., (2004). Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol., 70(5), 2667–2677 (11 pages).CrossRefGoogle Scholar
  29. Khalid, A.; Arshad, M.; Zahir, Z. A., (2004). Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol., 96(3), 473–480 (8 pages).CrossRefGoogle Scholar
  30. Khan, A. G., (2005). Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol., 18(4), 355–364 (10 pages).CrossRefGoogle Scholar
  31. Li, J.; Zu, J.; Tang, C.; Wu, J.; Muhammad, A.; Wang, H., (2005). Application of 16S rDNA PCR amplification and DDGE fingerprinting for detection of shift in microbial community diversity in Cu, Zn and Cd contaminated paddy soils. Chemosphere, 62(8), 1375–1380 (6 pages).Google Scholar
  32. Ma, Y.; Rajkumar, M.; Freitas, H., (2009). Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J. Hazard. Mater., 166(2–3), 1154–1161 (8 pages).CrossRefGoogle Scholar
  33. Mantelin, S.; Touraine, B., (2004). Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J. Exp. Bot., 55(394), 27–34 (8 pages).CrossRefGoogle Scholar
  34. Nouri, J.; Lorestani, B.; Yousefi, N.; Khorasani, N.; Hasani, A. H.; Seif, S.; Cheraghi, M., (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environ. Earth Sci., 62(3), 639–644 (6 pages).CrossRefGoogle Scholar
  35. Piotrowska-Seget, Z.; Cycon, M.; Kozdroj, J., (2005). Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl. Soil Ecol., 28(3), 237–246 (10 pages).CrossRefGoogle Scholar
  36. Ramsey, P. W.; Rillig, M. C.; Feris, K. P.; Gordon, N. S.; Moore, J. N.; Holben, W. E.; Gannon, J. E., (2005). Relationship between communities and processes; newinsights froma field study of a contaminated ecosystem. Ecol. Lett., 8(11), 1201–1210 (10 pages).CrossRefGoogle Scholar
  37. Rau, N.; Mishra, V.; Sharma, M.; Das, M.; Ahaluwalia, K.; Sharma, R. S., (2009). Evaluation of functional diversity in rhizobacterial taxa of a wild grass (Saccharum ravennae) colonizing abandoned fly ash dumps in Delhi urban ecosystem. Soil. Biol. Biochem., 41(4), 813–821 (9 pages).CrossRefGoogle Scholar
  38. Rohlf, J., (2004). NTSYS-PC Version 2.11T. Numerical Taxonomy and Multivariate Analysis System. Applied Bioestastistics, Inc.Google Scholar
  39. Schwyn, B.; Neilands, J. B., (1987). Universal chemical assay for the detection and determination of siderophores. Analys. Biochem., 160(1), 47–56 (10 pages).CrossRefGoogle Scholar
  40. Sharma, M.; Rau, N.; Mishra, V.; Sharma, R. S., (2005). Unexplored ecological significance of Saccharum munja. Species, 43, 22 (1 pages).Google Scholar
  41. Phage specificity and lipopolysaccharides of stem- and root-nodulating bacteria (Azorhizobium caulinodans, Sinorhizobium spp., and Rhizobium spp.) of Sesbania spp. Arch. Microbiol., 189(4), 411–418 (8 pages).CrossRefGoogle Scholar
  42. Sheng, X. F.; Xia, J. J., (2006). Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere, 64(6), 1036–1042 (7 pages).CrossRefGoogle Scholar
  43. Sheng, F. X.; Xia, J. J.; Jiang, Ch.Y.; He, L. Y.; Qian, M., (2008). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Poll., 156(3), 1164–1170 (7 pages).CrossRefGoogle Scholar
  44. Sneath, P. H. A.; Sokal, R. R., (1973). Numerical Taxonomy: the principles and practice of numerical classification. Freeman, San Francisco.Google Scholar
  45. Vásquez-Murrieta, M. S.; Migueles-Garduño, I.; Franco-Hernández, O.; Govaerts, B.; Dendooven, L., (2006). C and N mineralization and microbial biomass in heavy metal-contaminated soil. Eur. J. Soil, Biol., 42(2), 89–98 (10 pages).CrossRefGoogle Scholar
  46. Wardle, D. A.; Bonner, K. I.; Barker, G. M.; Yeates, G. W.; Nicholson, K. S.; Bardgett, R. D.; Watson, R. N.; Ghani, A., (1999). Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol. Monogr., 69(4), 535–568 (33 pages).CrossRefGoogle Scholar
  47. Weisburg, W. G.; Barns, S. M.; Pelletier, D. A.; Lane, D. J., (1991). 16Ribosomal DNA amplification for phylogenetic study. J. Bacteriol., 173(2), 697–703 (7 pages).Google Scholar
  48. Wenzel, W. W.; Lombi, E.; Adriano, D. C., (1999). Biogeochemical processes in the rhizosphere: role in phytoremediation of metal-polluted sites. in: Prasad, M.N.V., Hagemeyer, J. (Eds.), Heavy Metal Stress in Plants: from Molecules to Ecosystems. Springer, Heidelberg, Berlin, New YoGoogle Scholar
  49. Whiting, S. N.; De Souza, M. P.; Terry, N., (2001). Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ. Sci. Tech., 35(15), 3144–3150 (7 pages).CrossRefGoogle Scholar
  50. Wong, M. H., (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780 (6 pages).CrossRefGoogle Scholar
  51. Wu, S. C.; Cao, Z. H.; Li, Z. G.; Cheung, K. C.; Wong, M. H., (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125(1–2), 155–166 (12 pages).CrossRefGoogle Scholar
  52. Wu S.C.; Peng, X. L.; Cheung, K. C.; Liu, S. L.; Wong, M. H., (2009). Adsorption kinetics of Pb and Cd by two plant growth promoting rhizobacteria. Bioresour. Tech., 100(20), 4559–4563 (5 pages).CrossRefGoogle Scholar
  53. Young, K. D., (2006). The selective value of bacterial shape. Microbiol. Mol. Biol. R., 70(3), 660–703 (44 pages).CrossRefGoogle Scholar
  54. Zaidi, S.; Usmami, S.; Singh, B. R.; Musarrat, J., (2006). Significancce of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant grown promotion and nickel accumulation in Brassica juncea. Chemosphere, 64(6), 991–997 (7 pages).CrossRefGoogle Scholar
  55. Zhuang, X.; Chen, J.; Shim, H.; Bai, Z., (2007). New advances in plant growth promoting rhizobacteria for bioremediation. Environ. Int., 33(3), 406–413 (8 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2011

Authors and Affiliations

  • M. R. Melo
    • 1
  • N. R. Flores
    • 1
  • S. V. Murrieta
    • 2
  • A. R. Tovar
    • 2
  • A. G. Zúñiga
    • 3
  • O. F. Hernández
    • 4
  • A. P. Mendoza
    • 5
  • N. O. Pérez
    • 2
    • 6
  • A. R. Dorantes
    • 1
  1. 1.Department of Botany, School of National Biological SciencesNational Polytechnic InstituteMéxico
  2. 2.Department of Microbiology, School of National Biological SciencesNational Polytechnic InstituteDFMéxico
  3. 3.Petroleum Mexican InstituteDFMéxico
  4. 4.Department of Basic Sciences, Interdisciplinary Professional Unit of BiotechnologyNational Polytechnic InstituteDFMéxico
  5. 5.Metropolitan Autonomous UniversityMexico City
  6. 6.Probiomed, SA de CVCruce de Carreteras Acatzingo-Zumpahuacan S/NEdo. de MéxicoMéxico

Personalised recommendations