Advertisement

Response surface methodology for lead biosorption on Aspergillus terreus

  • F. J. Cerino Córdova
  • A. M. García León
  • R. B. Garcia Reyes
  • M. T. Garza González
  • E. Soto Regalado
  • M. N. Sánchez González
  • I. Quezada López
Article

Abstract

A central composite face-centered design was used to study and to optimize lead biosorption from aqueous solution on Aspergillus terreus biomass. Four factors such as stirring speed, temperature, solution pH and biomass dose at different levels were studied.The hierarchical quadratic model were established by adding replicates at the central point and axial points to the initial full factorial design (24). The percentage removal of lead was affected by biomass dose, pH, and interactions between pH and biomass dose, pH and stirring speed, pH and temperature. The hierarchical quadratic model described adequately the response surface based on the adjusted determination coefficient (R2 Adj= 0.97) and the adequate precision ratio (42.21). According to this model, the optimal conditions to remove lead completely from aqueous solutions (at initial lead concentration of 50 mg/L and solutions of 100 mL) with Aspergillus terreus were at pH 5.2, 50 °C, stirring speed of 102/min and a biomass dose of 139 mg.The response surface methodology can be used to determine the optimal conditions for metal adsorption on several adsorbents. In addition, results reported in this research demonstrated the feasibility of employing A. terreus as biosorbent for lead removal.

Keywords

Biosorbent Central composite face-centered design Heavy metals Optimization Wastewater 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahalya, N.; Ramachandra, T. V.; Kanamadi, R. D., (2003). Biosorption of heavy metals. Res. J. Chem. Environ. 7(4), 71–78 (8 pages).Google Scholar
  2. Almaguer-Cantú, V.; Garza-González, M. T.; Rivera de la Rosa, J.; Loredo Medrano, J. A., (2008). Biosorption of Pb (II) and Cd(II) in Fix Bed Column by immobilized Chlorella sp. Biomass. Water Sci. Tech., 58(5), 1061–1069 (9 pages).CrossRefGoogle Scholar
  3. Amini, M.; Younesi, H.; Bahramifar, N., (2009). Statistical modeling and optimization of the cadmium biosorption process in an aqueous solution using Aspergillus niger. Colloids Surf. A., 337(1–3), 67–73 (7 pages).CrossRefGoogle Scholar
  4. Amini, M.; Younesi, H.; Bahramifar, N.; Lorestani, A. A. Z.; Ghorbani, F.; Daneshi, A.; Sharifzadeh, M., (2008). Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J. Hazard. Mater., 154(1–3), 694–702 (9 pages).CrossRefGoogle Scholar
  5. Box, G. E. P.; Hunter, W. G.; Hunter, J. S., (1978). Statistics for experimenters: An introduction to design, data analysis, and model building. New York, John Wiley & Sons.Google Scholar
  6. Cerino-Córdova, F. J.; García-León, A. M.; Soto-Regalado, E.; Sánchez-González, M. N.; Lozano-Ramírez, T.; García-Avalos, B. C.; Loredo-Medrano, J. A., (2011). Experimental design for the optimization of copper biosorption from aqueous solution by Aspergillus terreus. J. Environ. Manag., (In press).Google Scholar
  7. Crist, R. H.; Oberholser, K.; Shank, K.; Nguyen, M., (1981). Nature of bonding between metallic ions and algal cell walls. Environ. Sci. Tech., 15(10), 1212–1217 (6 pages).CrossRefGoogle Scholar
  8. Design Expert, (2000). Version 6.0.1, Stat-Ease Inc., Minneapolis, MN.Google Scholar
  9. Fourest, E.; Roux, J., (1992). Heavy metals biosorption by fungal mycelial by-product: Mechanisms and influence of pH. Appl. Microbiol. Biotech., 37(3), 399–403 (5 pages).CrossRefGoogle Scholar
  10. Freitas, O.; Delerue-Matos, C.; Boaventura, R., (2009). Optimization of Cu(II) biosorption onto Ascophyllum nodosum by factorial design methodology. J. Hazard. Mater., 167(1–3), 449–454 (6 pages).CrossRefGoogle Scholar
  11. Garcia-Reyes, R. B.; Rangel-Mendez, J. R.; Alfaro-de la Torre, M. C., (2009). Chromium (III) uptake by agro-waste biosorbents: Chemical characterization, sorption-desorption studies, and mechanism. J. Hazard. Mater., 170(2–3), 845–854 (10 pages).Google Scholar
  12. Garcia-Reyes, R; Rangel-Mendez, J. R., (2009). Contribution of agro-waste material main components (hemicelluloses, cellulose, and lignin) to the removal of chromium (III) from aqueous solution. J. Chem. Tech. Biotech., 84(10), 1533–1538 (6 pages).CrossRefGoogle Scholar
  13. Goksungur, Y.; Uren, S.; Guvenc, U., (2005). Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour. Tech., 96(1), 103–109 (7 pages).CrossRefGoogle Scholar
  14. Gueu, S.; Yao, B.; Adouby, K.; Ado, G. Win (2007). Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. Int. J. Environ. Sci. Tech., 4(1), 11–17 (7 pages).CrossRefGoogle Scholar
  15. Gulati, R.; Saxena, R. K.; Gupta, R.; Yadav, R. P.; Davidson, W. S., (1999). Parametric optimization of Aspergillus terreus lipase production and its potential in ester synthesis. Process Biochem., 35(5), 459–469 (11 pages).CrossRefGoogle Scholar
  16. Issabayeva, G.; Aroua, M. K.; Sulaiman, N. M. N., (2006). Removal of lead from aqueous solutions on palm shell activated carbon. Bioresour. Tech., 97(18), 2350–2355 (6 pages).CrossRefGoogle Scholar
  17. Iyer, A.; Mody, K.; Jha, B., (2005). Biosorption of heavy metals by a marine bacterium. Mar. Poll. Bull., 50(3), 340–343 (4 pages).CrossRefGoogle Scholar
  18. Kaur, H.; Kaur, A.; Saini, H. S.; Chadha, B. S., (2009). Screening and selection of lovastatin hyper-producing mutants of Aspergillus terreus using cyclic mutagenesis. Acta. Microbiol. Immunol. Hung., 56(2), 169–180 (12 pages).CrossRefGoogle Scholar
  19. Khalaf, M. A., (2008). Biosorption of reactive dye from textile wastewater by non-viable biomass of Aspergillus niger and Spirogyra sp. Bioresour. Tech., 99(14), 6631–6634 (4 pages).CrossRefGoogle Scholar
  20. Lodeiro, P.; Cordero, B.; Barriada, J. L.; Herrero, R.; de Vicente, M. E. S., (2005). Biosorption of cadmium by biomass of brown marine macroalgae. Bioresour. Tech., 96(16), 1796–1803 (8 pages).CrossRefGoogle Scholar
  21. Montgomery, D. C., (2001). Design and analysis of experiments. New York, John Wiley and Sons.Google Scholar
  22. Nouri, J.; Lorestani, B.; Yousefi, N.; Khorasani, N.; Hasani, A. H.; Seif, S.; Cheraghi, M. (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environ. Earth Sci., 62(3), 639–644 (6 pages).CrossRefGoogle Scholar
  23. Pal, A.; Ghosh, S.; Paul, A. K., (2006). Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresour. Tech., 97(10), 1253–1258 (6 pages).CrossRefGoogle Scholar
  24. Qiming, Y.; Kaewsarn P., (1999). A model for pH dependent equilibrium of heavy metal biosorption. Korean J. Chem. Eng., 16(6), 753–757 (5 pages).CrossRefGoogle Scholar
  25. Regine, H.; Volesky, B., (2000). Biosorption: a solution to pollution. Int. Microbiol., 3(1), 17–24 (8 pages).Google Scholar
  26. Ruchi, G.; Saxena, R. K.; Rani, G., (2003). Fermentation waste of Aspergillus terreus: A promising copper bio-indicator. Process Biochem., 18(5), 397–401 (5 pages).Google Scholar
  27. Seki, H.; Suzuki, A.; Maruyama, H., (2005). Biosorption of chromium(VI) and arsenic(V) onto methylated yeast biomass. J. Colloid Interface Sci., 281(2), 261–266 (6 pages).CrossRefGoogle Scholar
  28. Selatnia, A.; Boukazoula, A.; Kechid, N.; Bakhti, M. Z.; Chergui, A.; Kerchich, Y., (2004). Biosorption of lead (II) from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Biochem. Eng. J., 19(2), 127-135 (9 pages).Google Scholar
  29. Silverstein R. M.; Webster F. X., (1998). Spectrometric Identification of Organic Compounds. New York Wiley and Sons.Google Scholar
  30. Tunali, S.; Akar, T.; Ozcan, A. S.; Kiran, S.; Ozcan, A., (2006). Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Sep. Purif. Tech., 47(3), 105–112 (8 pages).CrossRefGoogle Scholar
  31. Volesky, B., (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59(2–3), 203–216 (14 pages).CrossRefGoogle Scholar
  32. Volesky, B., (2003). Sorption and Biosorption. Quebec, Canada, BV Sorbex Inc.Google Scholar
  33. Yan, G.; Viraraghavan, T., (2000). Effect of pretreatment on the bioadsorption of heavy metals on Mucor rouxii. Water S. A., 26 (119–123), (5 pages).Google Scholar

Copyright information

© Islamic Azad University 2011

Authors and Affiliations

  • F. J. Cerino Córdova
    • 1
  • A. M. García León
    • 1
  • R. B. Garcia Reyes
    • 1
  • M. T. Garza González
    • 1
  • E. Soto Regalado
    • 1
  • M. N. Sánchez González
    • 1
  • I. Quezada López
    • 1
  1. 1.Facultad de Ciencias QuímicasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMéxico

Personalised recommendations