A study on contaminant migration of sugarcane effluent through porous soil medium



A significantly large volume of effluent is generated during the manufacture of sugar and contains high amount of pollution load. The effluent from sugarcane industry is disposed off on land moves into the wider environment through a number of routes and the soil itself retains the various contaminants in the effluent to a greater or lesser extent depending on the physical nature of the soil. The analysis of contaminant transport through soil used to design of industrial wastewater treatments and disposal systems. This paper discussed the adsorption and diffusion of cations calcium, magnesium, sodium and anions chloride and sulphate by the sorption diffusion permeameter under different hydraulic retentions time of 3 min, 13 min, 27 min and 58 min with a constant diffusion flow rate of 3.6 L/h. In this study, less percentage error found between observed adsorption and diffusion coefficients from the experiments at different hydraulic retentions time and optimum adsorption and diffusion coefficients from the experiments at optimum hydraulic retentions time of 30 min for calcium, magnesium, sodium, choloride and sulphate. The results of regression analysis implied that the adsorption and diffusion coefficients obtained from the equation for cations and anions were good recognizing with the experimental results.


Anions Cations Permeameter Regression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APHA, AWWA, WEF (1998). Standard methods for the examination of water and wastewater. 20th edition. American Public Health Association, American Water Works Association and the Water Environment Federation. Washington DC., USA.Google Scholar
  2. Barone, F. S.; Rowe, R. K.; Quigley, R. M., (1990a). Laboratory determination of chloride diffusion coefficient in an intact shale. Can. Geotech. J., 27(2), 177–184 (8 pages).CrossRefGoogle Scholar
  3. Barone, F. S.; Rowe, R.K.; Quigley, R. M., (1990b ). Laboratory determination of chloride diffusion coefficient in an intact mudstone. Geotechnical Research Centre Report, 1–35 (35 pages).Google Scholar
  4. Barone, F. S.; Yanful, E. K.; Quigley, R. M.; Rowe, R. K., (1989). Effect of multiple contaminant migration on diffusion and adsorption of some domestic waste contaminants in a natural clayey soil. Can. Geotech. J., 26(2), 189–198 (9 pages).CrossRefGoogle Scholar
  5. Crooks, V. E.; Quigley, R. M., (1984). Saline leachate migration through clay: A comparative laboratory and field investigation. Can. Geotech. J., 21, 349–362 (14 pages).CrossRefGoogle Scholar
  6. Dilip, K. J.; Atul, K.; Raja, R. Y., (2011). Analytical solution to the one-dimensional advection-diffusion equation with temporally dependent coefficients. J. Water Res. Protect., 3(1), 76–84 (9 pages).CrossRefGoogle Scholar
  7. Elangovan, R.; Saseetharan, M. K.,(1997). Unit operations in environmental engineering. New Age International Pvt. Ltd., New Delhi.Google Scholar
  8. Fityus, S. G.; Smith, D. W.; Booker, J. R., (1999). Contaminant transport through an unsaturated soil linear beneath a landfill. Can. Geotech. J., 36(2), 330–354 (25 pages).CrossRefGoogle Scholar
  9. Grisak, G. E.; Pickens, J. F., (1980). Solute transport through fractured media: 1. the effect of matrix diffusion. Water Resour. Res., 16(4), 719–730 (12 pages).CrossRefGoogle Scholar
  10. Hanumantha Rao, L., (2002). Industrial pollution and its control in sugar industry. Proceedings, National Conference on Appropriate Technologies for Industrial Pollution Control and Environmental Management, 102–105 (4 pages).Google Scholar
  11. Hoffman, D. L.; Rolston, D. E., (1980). Transport of organic phosphate in soil as affected by soil type. Soil Sci. Soc. Am. j., 44(1), 46–52 (7 pages).CrossRefGoogle Scholar
  12. Jessberger, H. L.; Onnich, K., (1994). Determination of pollutant transport parameters by laboratory testing. XIII ICSMFE, New Delhi, India, 1547–1552 (6 pages).Google Scholar
  13. Kalbe, U.; Muller, W. W.; Berger, W.; Eckardt, J., (2002). Transport of organic contaminants within composite liner systems. Appl. Clay Sci., 21(1), 67–76 (10 pages).CrossRefGoogle Scholar
  14. Kookana, R. S.; Aylmore, L. A.; Gerritse, R. G., (1992). Time-dependent sorption of pesticides during transport in soils. Soil Sci., 154(3), 214–225 (12 pages).CrossRefGoogle Scholar
  15. Lake, C. B.; Rowe, R. K., (2000). Diffusion of sodium and chloride through geosynthetic clay liners. Geotext. Geomembranes, 18(2–4), 103–131 (29 pages).CrossRefGoogle Scholar
  16. Le Man, H.; Behera, S. K.; Park, H. S., (2010). Optimization of operational parameters for ethanol production from Korean food waste leachate. Int. J. Environ. Sci. Tech., 7(1), 157–164 (11 pages).Google Scholar
  17. Liu, H. H.; Bodvarsson, G. S.; Finsterle, S., (2002). A note on unsaturated flow in two-dimensional fracture networks. Water Resour. Res., 38(9), 1176–1179 (4 pages).CrossRefGoogle Scholar
  18. Liu, H. H.; Bodvarsson, G. S.; Zhang, G.; (2004). Scale dependency of the effective matrix diffusion coefficient. Vadose Zone J. Soil Sci. Soc. Am. J., 3(1), 312–315 (10 pages).Google Scholar
  19. Liu, H. H.; Zhang, Y. Q.; Zhou, Q.; Molz, F. J., (2007). An interpretation of potential scale dependence of the effective matrix diffusion coefficient. J. Contam. Hydrol., 90(1–2), 41–57 (10 pages).CrossRefGoogle Scholar
  20. Mahler, C. F.; Velloso, R. Q. (2001). Diffusion and sorption experiments using a DKS Permeameter. Eng. Geol., 60(1–4), 173–179 (10 pages).CrossRefGoogle Scholar
  21. Malakootian M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industry’s wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6(2), 183–190 (8 pages).Google Scholar
  22. McGechan, M. B.; Lewis, D. R., (2002). Transport of particulate and colloid-sorbed contaminants through soil, Part I. Biosystem Eng., 83(3), 255–273 (17 pages).CrossRefGoogle Scholar
  23. Metcalf and Eddy, (1995). Wastewater Engineering — Treatment, Disposal, Reuse. Tata McGraw-Hill Publishing Company Limited, New Delhi.Google Scholar
  24. Mohammed, S. A. A.; Naik, M.; Sanaulla, P. F.; Zulfiqar, A A. N., (2008). Studies on contaminant transport at an industrial waste dumpsite of Bangalore, India. Interdiscipl. J. Appl. Sci., 3(3), 55–66 (12 pages).Google Scholar
  25. Neretnieks, I. (2002). A stochastic multi-channel model for solute transport — Analysis of tracer tests in fractured rock. Water Resour. Res., 55(3–4), 175–211 (10 pages).Google Scholar
  26. Nouri, J.; Khorasani, N.; Lorestani, B.; Karami, M.; Hassani, A.H.; Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci., 59(2): 315–323 (9 ages).CrossRefGoogle Scholar
  27. Nouri, J.; Lorestani, B.; Yousefi, N.; Khorasani, N.; Hasani, A. H.; Seif, S.; Cheraghi, M.(2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environ. Earth Sci. 62(3), 639–644 (6 pages).CrossRefGoogle Scholar
  28. Okoye, A. I.; Ejikeme, P. M.; Onukwuli, O. D., (2010). Lead removal from wastewater using fluted pumpkin seed shell activated carbon: Adsorption modeling and kinetics. Int. J. Environ. Sci. Tech., 7(4), 793–800 (8 pages).Google Scholar
  29. Quigley, R. M.; Fernandez, F.; Yanful, E.; Helgason, T.; Margaritis, A.; Whitby, J. L., (1987). Hydraulic conductivity of contaminated natural clay directly below a domestic landfill. Can. Geotech. J., 25(3), 377–383 (7 pages).CrossRefGoogle Scholar
  30. Rowe, R. K.; Booker, J. R., (1 985a). 1-D pollutant migration in soils of finite depth. ASCE J. Geotech. Eng., 111(4), 479–499 (21 pages).Google Scholar
  31. Rowe, R. K.; Booker, J. R., (1985b). Two-dimensional pollutant migration in soils of finite depth. Can. Geotech. J., 22, 429–436 (8 pages).CrossRefGoogle Scholar
  32. Rowe, R. K.; Booker, J. R.; (1988). Modelling of contaminant movement through fractured or jointed media with parallel fractures. Proceedings, 6th International conference on Numer. Meth. Geomechan., 2, 855–862 (8 pages).Google Scholar
  33. Rowe, R. K.; Booker, J. R.,(1989). A semi-analytic model for contaminant migration in a regular two or three dimensional fracture network: Conservative contaminants. Int. J. Numer. Anal. Meth., 13(5), 531–550 (20 pages).CrossRefGoogle Scholar
  34. Rowe, R. K.; Caers, C. J.; Booker, J. R., (1988). Laboratory determination of diffusion and distribution coefficients of contaminants using undisturbed clayey soil. Can. Geotech. J., 25, 108–118 (11 pages).CrossRefGoogle Scholar
  35. Sangam, H. P.; Rowe, R. K., (2001). Migration of dilute aqueous organic pollutants through HDPE geomembranes. Geotext. Geomembranes, 19(6), 329–357 (29 pages).CrossRefGoogle Scholar
  36. Shackelford, C. D., (1991). Laboratory Diffusion Testing for waste disposal — a review. J. Contam. Hydrol., 7(3), 177–217 (41 pages).CrossRefGoogle Scholar
  37. Sheikh, M. A.; Higuchi, T.; Fujimura, H.; Imo, T.; Miyagi, T.; Oomori, T., (2009). Contamination and impacts of new antifouling biocide Irgarol-1051 on subtropical coral reef waters. Int. J. Environ. Sci. Tech., 6(3), 353–358 (6 pages).Google Scholar
  38. Sivakumar, D.; Swaminathan, G., (2002). Studies on soil behavioural changes due to sugarcane effluent discharge. Proceedings, National Conference on Appropriate Technologies for Industrial Pollution Control and Environmental Management, 135–138.Google Scholar
  39. Srinivas, N.; Suresh Kumar, K., (2001). Physico chemical characterisitics of agricultural soils of Visakhapatnam. Ind. J. Environ. Protect., 21(9), 822–824 (3 pages).Google Scholar
  40. Sudheer, C.; Mathur, S.; Jain, S. K., (2008). Migration of contaminant below the municipal solid waste landfills in variably saturated soils. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG) Goa, India.Google Scholar
  41. Sudicky, E. A.; Frind, E. O., (1982). Contaminant transport in fractured porous media: Analytical solutions for a system of parallel fractures. Water Resour. Res, 18(6), 1634–1642 (9 pages).CrossRefGoogle Scholar
  42. Thakre, S. B.; Bhuyar, L. B.; Deshmukh, S. J., (2009). Oxidation ditch process using curved blade rotor as aerator. Int. J. Environ. Sci. Tech., 6(1), 113–122 (10 pages).Google Scholar
  43. Trivedy, R. K., (1998). Advances in wastewater treatment technologies (1). Global Science, Aligarh, India.Google Scholar

Copyright information

© Islamic Azad University 2011

Authors and Affiliations

  1. 1.Department of Civil Engineering, Easwari Engineering CollegeAnna UniversityChennai, Tamil NaduIndia

Personalised recommendations