Effect of cadmium supply levels to cadmium accumulation by Salix



The present investigation reports the results of the cadmium accumulated by Salix matsudana, S. alba var. Tristis and S. babylonica in a pot experiment at six different levels of cadmium supply (0, 0.5, 2, 6, 25, 60 mg/kg). All tested Salix species showed the different abilities to remove cadmium, which depend on species and concentrations level. Cadmium accumulated by the leaves, twigs and roots linearly increased with increasing cadmium supply levels. The higher concentration cadmium treatments significantly promoted the cadmium accumulation. S. matsudana always performed the stronger ability of cadmium accumulation under different cadmium supply treatments, while S. alba var. Tristis and S. babylonica had the poorer accumulation ability. Cadmium in soil was more intensively absorbed in the leaves and twigs for all three Salix species, was not retained in roots and was transferred to aboveground plant tissues. The results indicated that Salix has an excellent potential for cadmium phytoremediation because of its high accumulation ability.


Heavy metal Phytoremediation Plant Uptake 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M., (2010). Effect of fertilizer application on soil heavy metal concentration. Environ. Monitor. Assess., 160(1–4), 83–89 (7 pages).CrossRefGoogle Scholar
  2. Ayari, F.; Hamdi, H.; Jedidi, N.; Gharbi, N.; Kossai, R., (2010). Heavy metal distribution in soil and plant in municipal solid waste compost amended plots. Int. J. Environ. Sci. Tech., 7(3), 465–472 (8 pages).Google Scholar
  3. Blaylock, M. J.; Huang, J. W., (2000). Phytoextraction of metals. In: Raskin, I. and Ensley, B. D. (Eds.), Phytoremediation of toxic metals: using plants to cleanup the environment. New York, John Wiley and Sons, Inc.Google Scholar
  4. Cunningham, S. D.; Owen, D. W., (1996). Promises and prospects of phytoremediation. Plant Physiol., 110(3), 715–719 (5 pages).Google Scholar
  5. Das, P.; Samantaray, S.; Rout, G. R., (1997). Studies on cadmium toxicity in plants: A review. Environ. Pollut., 98(1), 29–36 (8 pages).CrossRefGoogle Scholar
  6. Dickinson, N. M.,(2000). Strategies for sustainable woodland on contaminated soils. Chemosphere, 41(1–2), 259–263 (5 pages).CrossRefGoogle Scholar
  7. Dobaradaran, S.; Mahvi, A. H.; Dehdashti, S., (2008a). Fluoride content of bottled drinking water available in Iran. Fluoride, 41(1), 93–94 (2 pages).Google Scholar
  8. Dobaradaran, S.; Mahvi, A. H.; Dehdashti, S.; Abadi, D. R. V.; Tehran, I., (2008b). Drinking water fluoride and child dental caries in Dashtestan, Iran. Fluoride, 41(3), 220–226 (7 pages).Google Scholar
  9. Eriksson, J.; Ledin, S., (1999). Changes in phytoavailability and concentration of cadmium in soil following long term Salix cropping. Water, Air Soil Pollut., 15(1–2), 171–184 (14 pages).CrossRefGoogle Scholar
  10. Goyal, P.; Sharma, P.; Srivastava, S.; Srivastava, M. M., (2008). Saraca indica leaf powder for decontamination of Pb: removal, recovery, adsorbent characterization and equilibrium modeling. Int. J. Environ. Sci. Tech. 5(1), 27–34 (8 pages).Google Scholar
  11. Greger, M.; Landdberg, T., (1999). Use of willow in phytoextraction. Int. J. Phytoremediat., 1(2), 115–123 (9 pages).CrossRefGoogle Scholar
  12. Jamal, S. N.; Iqbal, M. Z.; Athar, M.,(2006). Phytotoxic effect of aluminum and chromium on the germination and early growth of wheat (Triticum aestivum) varieties Anmol and Kiran. Int. J. Environ. Sci. Tech., 3(4), 411–416 (6 pages).CrossRefGoogle Scholar
  13. Jun, R.; Ling, T.; Guanghua, Z., (2009). Effects of chromium on seed germination, root elongation and coleoptile growth in six pulses. Int. J. Environ. Sci. Tech., 6(4), 571–578 (8 pages).Google Scholar
  14. Lasat, M. M., (2002). Phytoextraction of toxic metals: A review of biological mechanisms. J. Environ. Qual., 31(1), 109–120 (12 pages).CrossRefGoogle Scholar
  15. Ledin, S., (1998). Environmental consequences when growing short rotation forest in Sweden. Biomass and Bioenergy, 15(1), 49–55 (7 pages).CrossRefGoogle Scholar
  16. Lee, I.; Baek, K.; Kim, H.; Kim, S.; Kim, J.; Kwon, Y.; Chang, Y.; Bae, B., (2007). Phytoremediation of soil co-contaminated with heavy metals and TNT using four plant species. J. Environ. Sci. Health Part A., 42(13), 2039–2045 (7 pages).CrossRefGoogle Scholar
  17. Mahmood, S.; Hussain, A.; Saeed, Z.; Athar, M., (2005). Germination and seedling growth of corn (Zea mays l.) under varying levels of copper and zinc. Int. J. Environ. Sci. Tech., 2(3), 269–274 (6 pages).Google Scholar
  18. Maria, N.; Utmazian, D. S.; Wenzel, W. W., (2007). Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. J. Plant Nutr. Soil Sci., 170(2), 265–272 (8 pages).CrossRefGoogle Scholar
  19. Meers, E.; Hopgood, M.; Lesage, E.; Vervaeke, P.; Tack, F. M. G.; Verloo, M. G., (2004). Enhanced phytoextraction: In search of EDTA alternatives. Int. J. Phytoremediat., 6(2), 95–109 (15 pages).CrossRefGoogle Scholar
  20. Nabulo, G.; Oryem Origa, H.; Nasinyama, G. W.; Cole, D., (2008). Assessment of Zn, Cu, Pb and Ni contamination in wetland soils and plants in the lake basin. Int. J. Environ. Sci. Tech., 5(1), 65–74 (10 pages).Google Scholar
  21. Nouri, J.; Khorasani, N.; Lorestani, B.; Yousefi, N.; Hassani, A.H.; Karami, M., (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci. 59(2), 315–323 (9 pages).CrossRefGoogle Scholar
  22. Perez-Sirvent, C.; Martinez-Sanchez, M. J.; Garcia-Lorenzo, M. L.; Bech, J., (2008). Uptake of Cd and Pb by natural vegetation in soils polluted by mining activities. Fresenius Environ. Bull., 17(10b), 1666–1671 (6 pages).Google Scholar
  23. Pulford, I. D.; Watson, C., (2003). Phytoremediation of heavy metal-contaminated land by trees — A review. Environ. Int., 29(4), 529–540 (12 pages).CrossRefGoogle Scholar
  24. Punshon, T.; Dickinson, N. M., (1996). The potential of Salix clones for bioremediating metal polluted soil. Glimmerveen, I., (Ed.). Heavy metals and trees. Proceedings of a discussion meeting, Glasgow, Edinburgh: Institute of Chartered Foresters.Google Scholar
  25. Reeves, R. D.; Baker, A. J. M., (2000). Metal accumulation in plants. Ensley B. D.; Raskin, I., (Eds.). Phytoremediation of toxic metals: Using plants to clean up the environment. John Wiley and Sons, New York, USA.Google Scholar
  26. Shrestha, R.; Fischer, R.; Sillanpaa, M., (2007). Investigations on different positions of electrodes and their effects on the distribution of Cr at the water sediment interface. Int. J. Environ. Sci. Tech., 4(4), 413–420 (8 pages).CrossRefGoogle Scholar
  27. Statsoft, Inc., (1993). STATISTICA for Windows Release 4.5Google Scholar
  28. Vyslouzilova, M.; Tlustos, P.; Szakova, J., (2003). Cadmium and zinc phytoextraction potential of seven clones of Salix spp. Plants on heavy metal contaminated soil. Plant, Soil Environ., 49(12), 542–547 (6 pages).Google Scholar
  29. Zacchini, M.; Pietrini, F.; Mugnozza, G. S.; Pietrosanti, V. L.; Massacci, A., (2009). Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut., 197(1–4), 23–34 (12 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2011

Authors and Affiliations

  1. 1.School of Environmental and Municipal Engineering, Institute of Environmental EcologyLanzhou Jiaotong University, Lanzhou, China and Engineering Research Center for Cold and Arid Regions, Water Resource Comprehensive Utilization, Ministry of EducationLanzhouChina

Personalised recommendations