Heavy metals accumulation in plants growing in ex tin mining catchment

  • M. A. Ashraf
  • M. J. Maah
  • I. Yusoff


The degree of contamination by heavy metals (arsenic, copper, lead, tin and zinc) in soil and transfer to plants has been studied. Specimens of plant species from five locations in an area of 10 × 10 m were sampled with their corresponding soils. Thirty six plant species including two shallow water aquatic plants were identified. Soil and plant specimens were analyzed by using inductively coupled plasma optical emission spectrometry. It was found that metal concentration in soil was highly variable while concentration of metals in plants directly depends on the concentration of metals it was rooted. Roots showed highest metal concentration followed by leaves, shoots and flowers. Bioconcentraion factor and translocation factor were calculated, representing Cyperus rotundus L. as a potential tin-hyperaccumulator plant, previously not reported in literature. Plant Species Imperata cylindrica, Lycopodium cernuum, Melastoma malabathricum, Mimosa pudica Linn, Nelumbo nucifera, Phragmites australis L., Pteris vittata L. and Salvinia molesta, were metal accumulator while Acacia podalyriaefolia G. Don, Bulb Vanisium, Dillenia reticulate King, Eugenia reinwardtiana, Evodia roxburghiania Hk. f. clarke, Gleichenia linearis, Grewia erythrocarpa Ridl., Manihot esculenta Crantz, Paspalum conjugatum Berguis, Passiflora suberosa, Saccharum officinarum, Stenochlaena palustris (Burm.) Bedd. and Vitis trifolia Linn. were tolerated plant species. All other studied plants were excluders. Identified plant species could be useful for revegetation and erosion control in metals contaminated ex-mining sites. Morphological changes such as reduction in size, change in color and deshaping have also been observed in plant species with high metal values.


Cyperus rotundus L. Hyper accumulator Hyper tolerant Leaves Remediation Root Shoot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, E.; Fernández Marcos, M. L.; Vaamonde, C.; Fernández-Sanjurjo, M. J., (2003). Heavy metals in the dump of an abandoned mine in Galicia (NWSpain) and in the spontaneously occurring vegetation. Sci. Total Environ., 313(1–3), 185–197 (13 pages).CrossRefGoogle Scholar
  2. Ashraf, M. A.; Maah, M. J.; Yusoff, I., (2010). Study of water quality and heavy metals in soil and water of ex-mining area Bestari Jaya, Peninsular Malaysia, Int. J. Basic. Appl. Sci., 10(3), 7–27 (21 pages).Google Scholar
  3. Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A. H., (2010). Effect of fertilizer application on soil heavy metal concentration. Environ. Monitor. Assess. 160(1–4), 83–89 (7 pages).CrossRefGoogle Scholar
  4. Ayari, F.; Hamdi, H.; Jedidi, N.; Gharbi, N.; Kossai, R., (2010). Heavy metal distribution in soil and plant in municipal solid waste compost amended plots. Int. J. Environ. Sci. Tech., 7(3), 465–472 (8 pages).Google Scholar
  5. Baker, A. J. M., (1981). Accumulators and excluders strategies in the response of plants to heavy metals. J. plant nutr. 3(1–4), 643–654(12 pages).CrossRefGoogle Scholar
  6. Baker, A. J. M.; Brooks, R. R., (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126 (36 pages).Google Scholar
  7. Baker, A. J. M.; Reeves, R. D.; Hajar, A. S. M., (1994). Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi cearulescens J. and C. Presl. (Brasicaceae)., New Phytol. 127(1), 61–68 (8 pages).CrossRefGoogle Scholar
  8. Baker, A. J. M., (1995). Metal hyperaccumulation by plants: our present knowledge of the ecophysiological phenomenon. In: Will Plants Have a Role in Bioremediation? 14th Annual Symp. Current Topics in Plant Biochemistry, Physiology and Molecular Biology, 19–22 April, 7–8, Columbia, MO.Google Scholar
  9. Batty, L. C.; Baker, A. J. M.; Wheeler, B. D.; Curtis, C. D., (2000).The Effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis(Cav.) Trin ex. Steudel. Ann. Bot., 86(3), 647–653 (7 pages).CrossRefGoogle Scholar
  10. Baudo, R.; Canzian, E.; Galanti, G.; Guilizzoni, P.; Rapetti, G., (1985). Relationships between heavy metals and aquatic organisms in Lake Mezzola hydrographc system (Northern Italy) Hydrochemestry. Mem. Ist. Ital. Idrobiol., 43, 161–180 (19 pages).Google Scholar
  11. Bischof, C., (1996 ). Effects of heavy metal stress on free amino acids in the haemolymph and proteins in haemolymph and total body tissue of Lymantria dispar larvae parasitized by Glyptapanteles liparidis., Entomol. Experimental. et Appl., 79 ( 1) 61–68 (8 pages).CrossRefGoogle Scholar
  12. Boularbah, A.; Bitton, G.; Morel, J. L.; Schwartz, C., (2000). Assessment of metal accumulation in plants using MetPAD, a toxicity test specific for metal toicity. Environ. Toxicol., 15(5), 449–455 (7 pages).CrossRefGoogle Scholar
  13. Boularbah, A.; Schwartz, C.; Bitton, G.; Morel, J. L., (2006). Heavy metal contamination from mining sites in south Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere, 63(5), 802–810 (9 pages).Google Scholar
  14. Bradshaw, A. D.; Humphreys, M. O.; Johnson, M. S., (1978). The value of heavy metal tolerance in the revegation of metalliferous mine wastes, in: Goodman, G. T., Chadwick, M. J. (Eds.), Environmental management of mineral wastes. Sitjhoff and Noordhoff, The Netherlands, 311–314(4 pages).Google Scholar
  15. Brooks, R. R., (2000). Plants that Hyperaccumulate Heavy Metals. CAB International, Cambridge, UK, 380–385 (6 pages).Google Scholar
  16. Brotheridge, R. M.; Newton, K. E.; Taggart, M. A.; McCormick, P. H.; Evans S. W., (1998). Nickel, cobalt, zinc and copper levels in brown trout (Salmo trutta) from the river Otra, Southern Norway., Analyst, 123(1), 69–72 (4 pages).CrossRefGoogle Scholar
  17. Camel, V., (2000). Microwave-assisted solvent extraction of environmental samples. TrAC Trends in Anal. Chem., 19(4), 229–248 (20 pages).CrossRefGoogle Scholar
  18. Carpena-Ruiz, R.; Sopeña, A.; Ramon, A. M., (1989). Extraction of free amino acids from tomato leaves. Plant Soil., 119(2), 251–254 (4 pages).CrossRefGoogle Scholar
  19. Charles, C. W.; Glenn, S. R., (1953). The composition of plant fractions extracted with 80 % alcohol. Plant Physiol., 28(3), 535–538 (4 pages).CrossRefGoogle Scholar
  20. Conesa, H. M.; Faz, A.; Arnaldos, R., (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district. Sci. Total Environ., 366(1), 1–11 (11 pages).CrossRefGoogle Scholar
  21. Deng, H.; Ye, Z. H.; Wong, M. H., (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ. Pollut., 132(1), 29–40 (12 pages).CrossRefGoogle Scholar
  22. Dowdy, D. L.; McKone, T. E., (1997). Predicting plant uptake of organic chemicals from soil or air using octanol/water and octanol/air partitioning ratios and a molecular connectivity index. Environ. Toxicol. Chem., 16(12), 2448–2456 (8 pages).CrossRefGoogle Scholar
  23. Dudka, S.; Adriano, D. C., (1997). Environmental impacts of metal ore mining and processing: A review. J. Environ. Qual., 26(3), 590–602 (13 pages).CrossRefGoogle Scholar
  24. Fayiga, A. O.; Ma, L. Q.; Cao, X.; Rathinasabapathi, B., (2004). Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environ. Poll., 132(2), 289–296 (8 pages).CrossRefGoogle Scholar
  25. Freitas, H.; Prasad, M. N. V.; Pratas, J., (2004). Plant community tolerance and trace elements growing on the degraded soils of Sao Domingos mine in the south east of Portugal: Environmental implications. Environ. Int., 30(1), 65–72 (8 pages).CrossRefGoogle Scholar
  26. Gardea-Torresdey, J. L.; Peralta-Videa, J. R.; de la Rosa, G.; Parsons, J. G., (2005). Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordin. Chem. Rev., 249(17–18), 1797–1810 (14 pages).Google Scholar
  27. Gee, G. W.; Bauder, J. W., (1986). Particle soil analysis. in: Klute, A. (Ed.), Methods for soil analysis. Part 1: Physical and mineralogical methods. Soil Science Society of America. American Society of Agronomy, Madison, Wisconsin, USA., 383–411 (39 pages).Google Scholar
  28. Gibbs, M. I., (1951). The position of C14 in sunflower leaf metabolites after exposure of leaves to short period photosynthesis and darkness in an atmosphere of C1402., Plant Physiol. 26(3), 549–556 (8 pages).CrossRefGoogle Scholar
  29. Goyal, P.; Sharma, P.; Srivastava, S.; Srivastava, M. M., (2008). Saraca indica leaf powder for decontamination of Pb: Removal, recovery, adsorbent characterization and equilibrium modeling. Int. J. Environ. Sci. Tech., 5(1), 27–34 (8 pages).Google Scholar
  30. Griepink, B.; Muntau, H., (1988). The Certification of the Contents (Mass Fractions) of As, B, Cd, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se and Zn in Rye Grass—CRM 281. Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  31. Hall, W. S.; Pulliam, G. W., (1995), An assessment of metals in an estuarine wetlands ecosystem. Arch. Environ. Contam. Toxicol., 29(2), 164–173 (8 pages).CrossRefGoogle Scholar
  32. Henriques, F. S.; Fernandes, J. C., (1991). Metal uptake and distribution in rush (Juncus conglomeratus L.) plants growing in pyrites mine tailings at Lousal, Portugal. Sci. Total Environ., 102, 253–260 (8 pages).CrossRefGoogle Scholar
  33. Johansen, P.; Asmund, G., (2001). Pollution from mining in Greenland—a review, in: Olsen, H. K., Lorentzen, L., Rendal, O. (Eds.), Mining in the arctic. The Netherlands: A. A. Balkema Publishers, 29–36 (8 pages).Google Scholar
  34. Johnson, D. B.; Hallberg, K. B., (2005). Acid mine drainage remediation options: A Rev., Sci. Total Environ. 338(1–2), 3–14 (12 pages).CrossRefGoogle Scholar
  35. Keller, B. E. M.; Lajtha, K.; Cristofor, S., (1998). Trace metal concentrations in the sediments and plants of the Danube Delta, Romania., Wetlands. 18, 42–50 (9 pages).CrossRefGoogle Scholar
  36. Ling, T.; Guanghua, Z.; Jun, R., (2009). Effects of chromium on seed germination, root elongation and coleoptile growth in six pulses. Int. J. Environ. Sci. Tech., 6(4), 571–578 (8 pages).Google Scholar
  37. Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industry’s wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6(2) 183–190 (8 pages)Google Scholar
  38. Mateo, R.; Taggart, M.; Green, A. J.; Cristòfol, C.; Ramis, A.; Lefranc, H.; Figuerola, J.; Meharg, A. A., (2006). Altered porphyrin excretion and histopathology of greylag geese (Anser anser) exposed to soil contaminated with lead and arsenic in the Guadalquivir Marshes, SW Spain. Environ. Toxicol. Chem., 25(1), 203–212 (10 pages).CrossRefGoogle Scholar
  39. Mattina, M. I.; Lannucci-Berger, W.; Musante, C.; White, J. C., (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ. Pollut., 124(3), 375–378 (4 pages).CrossRefGoogle Scholar
  40. McNeill, J., (2006). International Code of Botanical Nomenclature (VIENNA CODE), adopted by the 17th International Botanical Congress Vienna, Austria.Google Scholar
  41. McGrath, S. W.; Zhao, F. J.; Lombi, E., (2001). Plant and rhizosphere processes involved in phtoremediation of metal-contaminated soils. Plant and Soil, 232(1–2), 207–214 (8 pages).CrossRefGoogle Scholar
  42. Mickel, J. T., (1992). Pteridophytes, in: McVaugh, R. (Ed.), Flora Novo-Galiciana. A descriptive account of the vascular plants of Western Mexico, vol. 17. University of Michigan Herbarium, Ann Arbor, 120–431 (12 pages).Google Scholar
  43. Min, Y.; Boquing, T.; Meizhen, T.; Aoyama, I., (2007). Accumulation and uptake of manganese in a hyperaccumulator Phytolacca americana. Miner. Eng., 20(2), 188–190 (3 pages).CrossRefGoogle Scholar
  44. Mizell, M.; Sidney, B.; Simpson, Jr., (1961), Paper chromatographic separation of amino acids: A solvent to replace phenol. J. Chromatograph. A(5), 157–160 (4 pages).Google Scholar
  45. Monni, S.; Uhlig, C.; Hansen, E.; Magel, E., (2001). Ecophysiological responses of Empertrum nigrum to heavy metal pollution. Environ. Poll., 112(2), 121–129 (9 pages).CrossRefGoogle Scholar
  46. Moran, R. C.; Riba, R., (1995). Psiolotaceae and Salviniaceae. Flora Mesoamericana, vol. 1. Universidad Nacional Autónoma de México, México, DF.Google Scholar
  47. Morel, J. L.; Bitton, G.; Schwartz, C.; Schiavon, M., ( 1997). Bioremediation of soils and waters contaminated with micropollutants: With role of plants, in: Zelikoff, J. J., Lynch, J. M., Sheppers, J., Eds., Ecotoxicology: Responses, Biomarkers and risk assessment OECD, 1–38 (38 pages).Google Scholar
  48. Nelson, D. W.; Sommers, L. E., (1982). Total carbon, organic carbon and organic matter, in: Page, L. (Ed.), Methods of soil analysis. Part 2. Agronomy 9. American Society of Agronomy, Madison, WI. 539–279 (41 pages).Google Scholar
  49. Norland, M. R.; Veith, D. L., (1995). Revegetation of coarse taconite iron ore tailing using municipal waste compost. J. Hazard. Mater., 41(2–3), 123–134 (12 pages).CrossRefGoogle Scholar
  50. Nouri, J., (1980). Heavy metals in sewage sludge, soils amended with sludge and their uptake by crop plants. Ph.D. thesis, University of London, London, UK.Google Scholar
  51. Nouri, J.; Karbassi, A. R.; Mirkia, S., (2008). Environmental management of coastal regions in the Caspian Sea. Int. J. Environ. Sci. Tech., 5(1), 43–52 (10 pages).Google Scholar
  52. Nouri, J.; Khorasani, N.; Lorestani, B.; Yousefi, N.; Hassani, A. H.; Karami, M., (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci., 59(2), 315–323 (9 pages).CrossRefGoogle Scholar
  53. Nouri, J.; Lorestani, B.; Yousefi, N.; Khorasani, N.; Hasani, A. H.; Seif, S.; Cheraghi, M., (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine Hamedan, Iran. Environ. Earth Sci., 62(3), 639–644 (6 pages).CrossRefGoogle Scholar
  54. Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5(3), 409–414 (6 pages).Google Scholar
  55. Prasad, M. N. V.; Strzalka, K., (2002). Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. 1st Ed., Kluwer Academic Publishers, Dordrecht, 330–432 (103 pages).CrossRefGoogle Scholar
  56. Peverly, J. H.; Surface, J. M.; Wang, T., (1995). Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment. Ecol. Eng., 5(1), 21–35 (15 pages).CrossRefGoogle Scholar
  57. Reeves, R. D.; Baker, A. J. M., (2000). Metal-accumulating plants, in: Raskin, I., Ensley, B. D. (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley and Sons Inc., New York, USA, 193–230 (38 pages).Google Scholar
  58. Rout, G. R.; Das, P., (2003). Effect of metal toxicity on plant growth and metabolism: I. Zinc., Agron., 23(1), 3–11 (9 pages).CrossRefGoogle Scholar
  59. Rowell, D. J., (1994). Soil Science. Methods and Applications, Longman, Essex, England, 149–150 (12 pages).Google Scholar
  60. Santillan, L. F. J.; Constantino, C. A. L.; Rodriguez, G. A. V.; Ubilla, N. M. C.; Hernandez, R. I. B., (2010). Manganese accumulation in plants of the mining zone of Hidalgo, Mexico. Biores. Tech., 101(15), 5836–5841 (6 pages).CrossRefGoogle Scholar
  61. Scholes, L. N. L.; Shutes, R. B. E.; Revitt, D. M.; Purchase, D.; Forshaw, M., (1999). The removal of urban pollutants by wetlands during wet weather. Wat Sc. Tech., 40(3), 333–340 (8 pages).CrossRefGoogle Scholar
  62. Singh, A. N.; Zeng, D. H.; Chen, F. S., (2005). Heavy metals concentration in re-developing soil of mine spoil under plantation of certain native woody species in dry tropical environment, India. J. Environ. Sci., 17(1), 168–174 (7 pages).Google Scholar
  63. SISS, (1985). Metodi normalizzati per l’analisi del suolo. Societa’ Italiana per la Scienza del Suolo, Edagricole, Bologna.Google Scholar
  64. Shah, B. A.; Shah, A. V.; Singh, R. R., (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int. J. Environ. Sci. Tech., 6(1), 77–90 (14 pages).Google Scholar
  65. Sheldon, A. R.; Menzies, N. W., (2005). The Effect of copper toxicity on the growth and root morphology of Rhodes Grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant and Soil, 278(1–2), 341–349 (9 pages).CrossRefGoogle Scholar
  66. Sun, Q.; Ye, Z. H.; Wang, X. R.; Wong, M. H., (2005). Increase of glutathione in mine population of Sedum alfredii: A Zn hyperaccumulator and Pb accumulator. Phytochem., 66(21), 2549–2556 (8 pages).CrossRefGoogle Scholar
  67. Thomas, G. W., (1996). Soil pH and soil acidity, in: Sparks, D. L. (Ed.), Methods for soil analysis. Part 3: Chemical methods. Soil Science Society of America. American Society of Agronomy, Madison, Wisconsin. USA, 475–490 (16 pages).Google Scholar
  68. Tordoff, G. M.; Baker, A. J. M.; Willis, A. J., (2000). Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41(1–2), 219–228 (10 pages).CrossRefGoogle Scholar
  69. Wilson, B.; Pyatt, F. B., (2007). Heavy metal dispersion, persistance, and bioccumulation around an ancient copper mine situated in Anglesey, UK. Ecotoxicol. Environ. Safety, 66(2), 224–231 (8 pages).CrossRefGoogle Scholar
  70. Wong, J. W. C.; Ip, C. M.; Wong, M. H., (1998). Acid-forming capacity of lead-zinc mine tailings and its implications for mine rehabilitation. Environ. Geochem. Health, 20(3), 149–155 (7 pages).CrossRefGoogle Scholar
  71. Wong, M. H., (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780 (6 pages).CrossRefGoogle Scholar
  72. Yanqun, Z.; Yuan, L.; Schvartz, C.; Langlade, L.; Fan, L., (2004). Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environ. Int., 30(4), 567–576 (10 pages).CrossRefGoogle Scholar
  73. Ye, Z. H.; Baker, A. J. M.; Wong, M. H.; Willis, A. J., (1997). Zinc, lead and cadmium tolerance, uptake and accumulationby the common reed, Phragmites australis (Cav.) trin. ex steudel. Ann. Bot., 80(3), 363–370 (8 pages).CrossRefGoogle Scholar
  74. Younger, P. L., (2001). Mine water pollution in Scotland: Nature, extent and preventative strategies. Sci. Total Environ., 265(1–3), 309–326 (18 pages).CrossRefGoogle Scholar
  75. Zhang, W.; Cai, Y.; Tu, C.; Ma, L. Q., (2002). Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci. Total Environ., 300(1–3), 167–177 (11 pages).Google Scholar
  76. Zvinowanda, C. M.; Okonkwo, J. O; Shabalala, P. N.; Agyei, N. M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech., 6(3) 425–434 (10 pages).Google Scholar

Copyright information

© Islamic Azad University 2011

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of GeologyUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations