Skip to main content
Log in

Heavy metals accumulation in plants growing in ex tin mining catchment

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The degree of contamination by heavy metals (arsenic, copper, lead, tin and zinc) in soil and transfer to plants has been studied. Specimens of plant species from five locations in an area of 10 × 10 m were sampled with their corresponding soils. Thirty six plant species including two shallow water aquatic plants were identified. Soil and plant specimens were analyzed by using inductively coupled plasma optical emission spectrometry. It was found that metal concentration in soil was highly variable while concentration of metals in plants directly depends on the concentration of metals it was rooted. Roots showed highest metal concentration followed by leaves, shoots and flowers. Bioconcentraion factor and translocation factor were calculated, representing Cyperus rotundus L. as a potential tin-hyperaccumulator plant, previously not reported in literature. Plant Species Imperata cylindrica, Lycopodium cernuum, Melastoma malabathricum, Mimosa pudica Linn, Nelumbo nucifera, Phragmites australis L., Pteris vittata L. and Salvinia molesta, were metal accumulator while Acacia podalyriaefolia G. Don, Bulb Vanisium, Dillenia reticulate King, Eugenia reinwardtiana, Evodia roxburghiania Hk. f. clarke, Gleichenia linearis, Grewia erythrocarpa Ridl., Manihot esculenta Crantz, Paspalum conjugatum Berguis, Passiflora suberosa, Saccharum officinarum, Stenochlaena palustris (Burm.) Bedd. and Vitis trifolia Linn. were tolerated plant species. All other studied plants were excluders. Identified plant species could be useful for revegetation and erosion control in metals contaminated ex-mining sites. Morphological changes such as reduction in size, change in color and deshaping have also been observed in plant species with high metal values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, E.; Fernández Marcos, M. L.; Vaamonde, C.; Fernández-Sanjurjo, M. J., (2003). Heavy metals in the dump of an abandoned mine in Galicia (NWSpain) and in the spontaneously occurring vegetation. Sci. Total Environ., 313(1–3), 185–197 (13 pages).

    Article  CAS  Google Scholar 

  • Ashraf, M. A.; Maah, M. J.; Yusoff, I., (2010). Study of water quality and heavy metals in soil and water of ex-mining area Bestari Jaya, Peninsular Malaysia, Int. J. Basic. Appl. Sci., 10(3), 7–27 (21 pages).

    Google Scholar 

  • Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A. H., (2010). Effect of fertilizer application on soil heavy metal concentration. Environ. Monitor. Assess. 160(1–4), 83–89 (7 pages).

    Article  CAS  Google Scholar 

  • Ayari, F.; Hamdi, H.; Jedidi, N.; Gharbi, N.; Kossai, R., (2010). Heavy metal distribution in soil and plant in municipal solid waste compost amended plots. Int. J. Environ. Sci. Tech., 7(3), 465–472 (8 pages).

    CAS  Google Scholar 

  • Baker, A. J. M., (1981). Accumulators and excluders strategies in the response of plants to heavy metals. J. plant nutr. 3(1–4), 643–654(12 pages).

    Article  CAS  Google Scholar 

  • Baker, A. J. M.; Brooks, R. R., (1989). Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126 (36 pages).

    CAS  Google Scholar 

  • Baker, A. J. M.; Reeves, R. D.; Hajar, A. S. M., (1994). Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi cearulescens J. and C. Presl. (Brasicaceae)., New Phytol. 127(1), 61–68 (8 pages).

    Article  CAS  Google Scholar 

  • Baker, A. J. M., (1995). Metal hyperaccumulation by plants: our present knowledge of the ecophysiological phenomenon. In: Will Plants Have a Role in Bioremediation? 14th Annual Symp. Current Topics in Plant Biochemistry, Physiology and Molecular Biology, 19–22 April, 7–8, Columbia, MO.

  • Batty, L. C.; Baker, A. J. M.; Wheeler, B. D.; Curtis, C. D., (2000).The Effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis(Cav.) Trin ex. Steudel. Ann. Bot., 86(3), 647–653 (7 pages).

    Article  CAS  Google Scholar 

  • Baudo, R.; Canzian, E.; Galanti, G.; Guilizzoni, P.; Rapetti, G., (1985). Relationships between heavy metals and aquatic organisms in Lake Mezzola hydrographc system (Northern Italy) Hydrochemestry. Mem. Ist. Ital. Idrobiol., 43, 161–180 (19 pages).

    Google Scholar 

  • Bischof, C., (1996 ). Effects of heavy metal stress on free amino acids in the haemolymph and proteins in haemolymph and total body tissue of Lymantria dispar larvae parasitized by Glyptapanteles liparidis., Entomol. Experimental. et Appl., 79 ( 1) 61–68 (8 pages).

    Article  CAS  Google Scholar 

  • Boularbah, A.; Bitton, G.; Morel, J. L.; Schwartz, C., (2000). Assessment of metal accumulation in plants using MetPAD, a toxicity test specific for metal toicity. Environ. Toxicol., 15(5), 449–455 (7 pages).

    Article  CAS  Google Scholar 

  • Boularbah, A.; Schwartz, C.; Bitton, G.; Morel, J. L., (2006). Heavy metal contamination from mining sites in south Morocco: 1. Use of a biotest to assess metal toxicity of tailings and soils. Chemosphere, 63(5), 802–810 (9 pages).

    CAS  Google Scholar 

  • Bradshaw, A. D.; Humphreys, M. O.; Johnson, M. S., (1978). The value of heavy metal tolerance in the revegation of metalliferous mine wastes, in: Goodman, G. T., Chadwick, M. J. (Eds.), Environmental management of mineral wastes. Sitjhoff and Noordhoff, The Netherlands, 311–314(4 pages).

  • Brooks, R. R., (2000). Plants that Hyperaccumulate Heavy Metals. CAB International, Cambridge, UK, 380–385 (6 pages).

    Google Scholar 

  • Brotheridge, R. M.; Newton, K. E.; Taggart, M. A.; McCormick, P. H.; Evans S. W., (1998). Nickel, cobalt, zinc and copper levels in brown trout (Salmo trutta) from the river Otra, Southern Norway., Analyst, 123(1), 69–72 (4 pages).

    Article  CAS  Google Scholar 

  • Camel, V., (2000). Microwave-assisted solvent extraction of environmental samples. TrAC Trends in Anal. Chem., 19(4), 229–248 (20 pages).

    Article  CAS  Google Scholar 

  • Carpena-Ruiz, R.; Sopeña, A.; Ramon, A. M., (1989). Extraction of free amino acids from tomato leaves. Plant Soil., 119(2), 251–254 (4 pages).

    Article  CAS  Google Scholar 

  • Charles, C. W.; Glenn, S. R., (1953). The composition of plant fractions extracted with 80 % alcohol. Plant Physiol., 28(3), 535–538 (4 pages).

    Article  Google Scholar 

  • Conesa, H. M.; Faz, A.; Arnaldos, R., (2006). Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district. Sci. Total Environ., 366(1), 1–11 (11 pages).

    Article  CAS  Google Scholar 

  • Deng, H.; Ye, Z. H.; Wong, M. H., (2004). Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ. Pollut., 132(1), 29–40 (12 pages).

    Article  CAS  Google Scholar 

  • Dowdy, D. L.; McKone, T. E., (1997). Predicting plant uptake of organic chemicals from soil or air using octanol/water and octanol/air partitioning ratios and a molecular connectivity index. Environ. Toxicol. Chem., 16(12), 2448–2456 (8 pages).

    Article  CAS  Google Scholar 

  • Dudka, S.; Adriano, D. C., (1997). Environmental impacts of metal ore mining and processing: A review. J. Environ. Qual., 26(3), 590–602 (13 pages).

    Article  CAS  Google Scholar 

  • Fayiga, A. O.; Ma, L. Q.; Cao, X.; Rathinasabapathi, B., (2004). Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environ. Poll., 132(2), 289–296 (8 pages).

    Article  CAS  Google Scholar 

  • Freitas, H.; Prasad, M. N. V.; Pratas, J., (2004). Plant community tolerance and trace elements growing on the degraded soils of Sao Domingos mine in the south east of Portugal: Environmental implications. Environ. Int., 30(1), 65–72 (8 pages).

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J. L.; Peralta-Videa, J. R.; de la Rosa, G.; Parsons, J. G., (2005). Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coordin. Chem. Rev., 249(17–18), 1797–1810 (14 pages).

    CAS  Google Scholar 

  • Gee, G. W.; Bauder, J. W., (1986). Particle soil analysis. in: Klute, A. (Ed.), Methods for soil analysis. Part 1: Physical and mineralogical methods. Soil Science Society of America. American Society of Agronomy, Madison, Wisconsin, USA., 383–411 (39 pages).

    Google Scholar 

  • Gibbs, M. I., (1951). The position of C14 in sunflower leaf metabolites after exposure of leaves to short period photosynthesis and darkness in an atmosphere of C1402., Plant Physiol. 26(3), 549–556 (8 pages).

    Article  CAS  Google Scholar 

  • Goyal, P.; Sharma, P.; Srivastava, S.; Srivastava, M. M., (2008). Saraca indica leaf powder for decontamination of Pb: Removal, recovery, adsorbent characterization and equilibrium modeling. Int. J. Environ. Sci. Tech., 5(1), 27–34 (8 pages).

    CAS  Google Scholar 

  • Griepink, B.; Muntau, H., (1988). The Certification of the Contents (Mass Fractions) of As, B, Cd, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se and Zn in Rye Grass—CRM 281. Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • Hall, W. S.; Pulliam, G. W., (1995), An assessment of metals in an estuarine wetlands ecosystem. Arch. Environ. Contam. Toxicol., 29(2), 164–173 (8 pages).

    Article  CAS  Google Scholar 

  • Henriques, F. S.; Fernandes, J. C., (1991). Metal uptake and distribution in rush (Juncus conglomeratus L.) plants growing in pyrites mine tailings at Lousal, Portugal. Sci. Total Environ., 102, 253–260 (8 pages).

    Article  CAS  Google Scholar 

  • Johansen, P.; Asmund, G., (2001). Pollution from mining in Greenland—a review, in: Olsen, H. K., Lorentzen, L., Rendal, O. (Eds.), Mining in the arctic. The Netherlands: A. A. Balkema Publishers, 29–36 (8 pages).

    Google Scholar 

  • Johnson, D. B.; Hallberg, K. B., (2005). Acid mine drainage remediation options: A Rev., Sci. Total Environ. 338(1–2), 3–14 (12 pages).

    Article  CAS  Google Scholar 

  • Keller, B. E. M.; Lajtha, K.; Cristofor, S., (1998). Trace metal concentrations in the sediments and plants of the Danube Delta, Romania., Wetlands. 18, 42–50 (9 pages).

    Article  Google Scholar 

  • Ling, T.; Guanghua, Z.; Jun, R., (2009). Effects of chromium on seed germination, root elongation and coleoptile growth in six pulses. Int. J. Environ. Sci. Tech., 6(4), 571–578 (8 pages).

    Google Scholar 

  • Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industry’s wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6(2) 183–190 (8 pages)

    CAS  Google Scholar 

  • Mateo, R.; Taggart, M.; Green, A. J.; Cristòfol, C.; Ramis, A.; Lefranc, H.; Figuerola, J.; Meharg, A. A., (2006). Altered porphyrin excretion and histopathology of greylag geese (Anser anser) exposed to soil contaminated with lead and arsenic in the Guadalquivir Marshes, SW Spain. Environ. Toxicol. Chem., 25(1), 203–212 (10 pages).

    Article  CAS  Google Scholar 

  • Mattina, M. I.; Lannucci-Berger, W.; Musante, C.; White, J. C., (2003). Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Environ. Pollut., 124(3), 375–378 (4 pages).

    Article  CAS  Google Scholar 

  • McNeill, J., (2006). International Code of Botanical Nomenclature (VIENNA CODE), adopted by the 17th International Botanical Congress Vienna, Austria.

  • McGrath, S. W.; Zhao, F. J.; Lombi, E., (2001). Plant and rhizosphere processes involved in phtoremediation of metal-contaminated soils. Plant and Soil, 232(1–2), 207–214 (8 pages).

    Article  CAS  Google Scholar 

  • Mickel, J. T., (1992). Pteridophytes, in: McVaugh, R. (Ed.), Flora Novo-Galiciana. A descriptive account of the vascular plants of Western Mexico, vol. 17. University of Michigan Herbarium, Ann Arbor, 120–431 (12 pages).

    Google Scholar 

  • Min, Y.; Boquing, T.; Meizhen, T.; Aoyama, I., (2007). Accumulation and uptake of manganese in a hyperaccumulator Phytolacca americana. Miner. Eng., 20(2), 188–190 (3 pages).

    Article  CAS  Google Scholar 

  • Mizell, M.; Sidney, B.; Simpson, Jr., (1961), Paper chromatographic separation of amino acids: A solvent to replace phenol. J. Chromatograph. A(5), 157–160 (4 pages).

    Google Scholar 

  • Monni, S.; Uhlig, C.; Hansen, E.; Magel, E., (2001). Ecophysiological responses of Empertrum nigrum to heavy metal pollution. Environ. Poll., 112(2), 121–129 (9 pages).

    Article  CAS  Google Scholar 

  • Moran, R. C.; Riba, R., (1995). Psiolotaceae and Salviniaceae. Flora Mesoamericana, vol. 1. Universidad Nacional Autónoma de México, México, DF.

    Google Scholar 

  • Morel, J. L.; Bitton, G.; Schwartz, C.; Schiavon, M., ( 1997). Bioremediation of soils and waters contaminated with micropollutants: With role of plants, in: Zelikoff, J. J., Lynch, J. M., Sheppers, J., Eds., Ecotoxicology: Responses, Biomarkers and risk assessment OECD, 1–38 (38 pages).

  • Nelson, D. W.; Sommers, L. E., (1982). Total carbon, organic carbon and organic matter, in: Page, L. (Ed.), Methods of soil analysis. Part 2. Agronomy 9. American Society of Agronomy, Madison, WI. 539–279 (41 pages).

    Google Scholar 

  • Norland, M. R.; Veith, D. L., (1995). Revegetation of coarse taconite iron ore tailing using municipal waste compost. J. Hazard. Mater., 41(2–3), 123–134 (12 pages).

    Article  CAS  Google Scholar 

  • Nouri, J., (1980). Heavy metals in sewage sludge, soils amended with sludge and their uptake by crop plants. Ph.D. thesis, University of London, London, UK.

    Google Scholar 

  • Nouri, J.; Karbassi, A. R.; Mirkia, S., (2008). Environmental management of coastal regions in the Caspian Sea. Int. J. Environ. Sci. Tech., 5(1), 43–52 (10 pages).

    Google Scholar 

  • Nouri, J.; Khorasani, N.; Lorestani, B.; Yousefi, N.; Hassani, A. H.; Karami, M., (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci., 59(2), 315–323 (9 pages).

    Article  CAS  Google Scholar 

  • Nouri, J.; Lorestani, B.; Yousefi, N.; Khorasani, N.; Hasani, A. H.; Seif, S.; Cheraghi, M., (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine Hamedan, Iran. Environ. Earth Sci., 62(3), 639–644 (6 pages).

    Article  CAS  Google Scholar 

  • Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5(3), 409–414 (6 pages).

    CAS  Google Scholar 

  • Prasad, M. N. V.; Strzalka, K., (2002). Physiology and Biochemistry of Metal Toxicity and Tolerance in Plants. 1st Ed., Kluwer Academic Publishers, Dordrecht, 330–432 (103 pages).

    Book  Google Scholar 

  • Peverly, J. H.; Surface, J. M.; Wang, T., (1995). Growth and trace metal absorption by Phragmites australis in wetlands constructed for landfill leachate treatment. Ecol. Eng., 5(1), 21–35 (15 pages).

    Article  Google Scholar 

  • Reeves, R. D.; Baker, A. J. M., (2000). Metal-accumulating plants, in: Raskin, I., Ensley, B. D. (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley and Sons Inc., New York, USA, 193–230 (38 pages).

    Google Scholar 

  • Rout, G. R.; Das, P., (2003). Effect of metal toxicity on plant growth and metabolism: I. Zinc., Agron., 23(1), 3–11 (9 pages).

    Article  Google Scholar 

  • Rowell, D. J., (1994). Soil Science. Methods and Applications, Longman, Essex, England, 149–150 (12 pages).

    Google Scholar 

  • Santillan, L. F. J.; Constantino, C. A. L.; Rodriguez, G. A. V.; Ubilla, N. M. C.; Hernandez, R. I. B., (2010). Manganese accumulation in plants of the mining zone of Hidalgo, Mexico. Biores. Tech., 101(15), 5836–5841 (6 pages).

    Article  Google Scholar 

  • Scholes, L. N. L.; Shutes, R. B. E.; Revitt, D. M.; Purchase, D.; Forshaw, M., (1999). The removal of urban pollutants by wetlands during wet weather. Wat Sc. Tech., 40(3), 333–340 (8 pages).

    Article  CAS  Google Scholar 

  • Singh, A. N.; Zeng, D. H.; Chen, F. S., (2005). Heavy metals concentration in re-developing soil of mine spoil under plantation of certain native woody species in dry tropical environment, India. J. Environ. Sci., 17(1), 168–174 (7 pages).

    CAS  Google Scholar 

  • SISS, (1985). Metodi normalizzati per l’analisi del suolo. Societa’ Italiana per la Scienza del Suolo, Edagricole, Bologna.

    Google Scholar 

  • Shah, B. A.; Shah, A. V.; Singh, R. R., (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int. J. Environ. Sci. Tech., 6(1), 77–90 (14 pages).

    CAS  Google Scholar 

  • Sheldon, A. R.; Menzies, N. W., (2005). The Effect of copper toxicity on the growth and root morphology of Rhodes Grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant and Soil, 278(1–2), 341–349 (9 pages).

    Article  CAS  Google Scholar 

  • Sun, Q.; Ye, Z. H.; Wang, X. R.; Wong, M. H., (2005). Increase of glutathione in mine population of Sedum alfredii: A Zn hyperaccumulator and Pb accumulator. Phytochem., 66(21), 2549–2556 (8 pages).

    Article  CAS  Google Scholar 

  • Thomas, G. W., (1996). Soil pH and soil acidity, in: Sparks, D. L. (Ed.), Methods for soil analysis. Part 3: Chemical methods. Soil Science Society of America. American Society of Agronomy, Madison, Wisconsin. USA, 475–490 (16 pages).

    Google Scholar 

  • Tordoff, G. M.; Baker, A. J. M.; Willis, A. J., (2000). Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41(1–2), 219–228 (10 pages).

    Article  CAS  Google Scholar 

  • Wilson, B.; Pyatt, F. B., (2007). Heavy metal dispersion, persistance, and bioccumulation around an ancient copper mine situated in Anglesey, UK. Ecotoxicol. Environ. Safety, 66(2), 224–231 (8 pages).

    Article  CAS  Google Scholar 

  • Wong, J. W. C.; Ip, C. M.; Wong, M. H., (1998). Acid-forming capacity of lead-zinc mine tailings and its implications for mine rehabilitation. Environ. Geochem. Health, 20(3), 149–155 (7 pages).

    Article  CAS  Google Scholar 

  • Wong, M. H., (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780 (6 pages).

    Article  CAS  Google Scholar 

  • Yanqun, Z.; Yuan, L.; Schvartz, C.; Langlade, L.; Fan, L., (2004). Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China. Environ. Int., 30(4), 567–576 (10 pages).

    Article  Google Scholar 

  • Ye, Z. H.; Baker, A. J. M.; Wong, M. H.; Willis, A. J., (1997). Zinc, lead and cadmium tolerance, uptake and accumulationby the common reed, Phragmites australis (Cav.) trin. ex steudel. Ann. Bot., 80(3), 363–370 (8 pages).

    Article  CAS  Google Scholar 

  • Younger, P. L., (2001). Mine water pollution in Scotland: Nature, extent and preventative strategies. Sci. Total Environ., 265(1–3), 309–326 (18 pages).

    Article  CAS  Google Scholar 

  • Zhang, W.; Cai, Y.; Tu, C.; Ma, L. Q., (2002). Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci. Total Environ., 300(1–3), 167–177 (11 pages).

    CAS  Google Scholar 

  • Zvinowanda, C. M.; Okonkwo, J. O; Shabalala, P. N.; Agyei, N. M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech., 6(3) 425–434 (10 pages).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ashraf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashraf, M.A., Maah, M.J. & Yusoff, I. Heavy metals accumulation in plants growing in ex tin mining catchment. Int. J. Environ. Sci. Technol. 8, 401–416 (2011). https://doi.org/10.1007/BF03326227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326227

Keywords

Navigation