Effects of plants development and pollutant loading on performance of vertical subsurface flow constructed wetlands

  • B. Cheng
  • C. W. Hu
  • Y. J. Zhao


The influent concentration has a great effect on nutrients removal efficiency in vertical subsurface flow constructed wetland systems, but treatment performance response to different C: N: P ratios in the influent are unclear at present. At the first growing seasons, the effects of the plants present or not, season, the different C: N: P ratio in influent condition and their interaction on treatment performances were studied in the planted or the unplanted wetlands in greenhouse condition. Each set of units was operated at hydraulic loading rates of 40 L/d. Low, medium and high-strength (100, 200, 400 mg/L of chemical oxygen demand or 20, 40, 80 mg/L total nitrogen) synthetic sewage were applied as influent. According to the first growing season results, the average removal efficiencies for the unplanted and the planted wetlands were as follows: chemical oxygen demand (44–58 % and 55–61 % respectively), total nitrogen (26–49% and 31–54 %) and total phosphorus (36–64 % and 70–83 %). The both wetlands system was operated as an efficient treatment system of highest average removal rates of both chemical oxygen demand and total phosphorus when medium-strength synthetic sewage were applied. When high strength synthetic sewage was applied, the planted wetlands usually had a higher nutrients removal rates than the unplanted over the study period. The plants grew well under any high loading treatment over the study period. Anyhow, it also proved that the wetland systems have a good capacity to treat different strength wastewater in greenhouse condition.


Acorus calamus C: N: P ratio Nutrients removal rates Seasonal variation Vertical flowconstructed wetlands 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Ghani, N. T.; Elchaghaby, G. A., (2007). Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption. Int. J. Environ. Sci. Tech. 4(4), 451–456 (6 pages).CrossRefGoogle Scholar
  2. Abdel-Ghani, N. T.; Hegazy, A. K.; El-Chaghaby, G. A., (2009). Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling.. Int. J. Environ. Sci. Tech., 6(2), 243–248 (6 pages).Google Scholar
  3. Akratos, C. S.; Tsihrintzis, V. A., (2007). Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecol. Eng., 29(2), 173–191 (19 pages).CrossRefGoogle Scholar
  4. Alam, Md. J. B.; Islam, M. R.; Muyen, Z.; Mamun, M.; Islam, S., (2007).Water quality parameters along rivers. Int. J. Environ. Sci. Tech., 4(1), 159–167 (9 pages).CrossRefGoogle Scholar
  5. Baptista, J. D. C.; Davenport R. J.; Donnelly, T.; Curtis, T. P.; Rayne, D., ( 2008). The microbial diversity of laboratory-scale wetlands appears to be randomly assembled. Water. Res., 42(12), 3182–3190 (9 pages).CrossRefGoogle Scholar
  6. Baptista, J. D. C.; Donelly, T.; Rayne, D.; Davenport, R. J., (2003). Microbial mechanisms of carbon removal in subsurface flow wetlands. Water Sci. Tech., 48(5), 127–134 (8 pages).Google Scholar
  7. Brix, H.; Arias, C. A.; Del Bubba, M., (2001). Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands. Water Sci. Tech., 44(11-12), 47–54 (8 pages).Google Scholar
  8. Brix, H.; Arias, C. A., (2005). The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater. New Danish guidelines., Ecol. Eng., 25(5), 491–500 (10 pages).CrossRefGoogle Scholar
  9. Calheiros, C. S. C.; Rangel, A. O. S. S.; Castro, P. M. L., (2009). Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Bioresour. Tech., 100(13), 3205–3213 (9 pages).CrossRefGoogle Scholar
  10. Cooper, P. F., (1999). A review of the design and performance of a vertical-flow and hybrid reed bed treatment systems. Water Sci. Tech., 40(3), 1–9 (9 pages).CrossRefGoogle Scholar
  11. Coveney, M. F.; Sites, D. L.; Lowe, E. F; Battoe, L. E.; Conrow, R., (2002). Nutrient removal from eutrophic lake water by wetland filtration. Ecol. Eng., 19(2), 141–159 (19 pages).CrossRefGoogle Scholar
  12. Edwards, K. R.; Cizkova, H.; Zemanova, K.; Santruckova, H., (2006). Plant growth and microbial processes in a constructed wetland planted with Phalaris arundinacea. Ecol. Eng., 27(2), 153–165 (9 pages).CrossRefGoogle Scholar
  13. Enriquez, S.; Duarte, C. M.; Sand-Jensen, K., (1993). Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C: N: P content. Oecologia, 94(4), 457–471 (15 pages).CrossRefGoogle Scholar
  14. Harikumar, P. S.; Nasir, U. P.; Mujeebu Rahman, M. P., (2009). Distribution of heavy metals in the core sediments of a tropical wetland system. Int. J. Environ. Sci. Tech., 6(2), 225–232 (8 pages).Google Scholar
  15. Igbinosa, E. O.; Okoh, A. I., (2009). Impact of discharge wastewater effluents on the physico-chemical qualities of a receiving watershed in a typical rural community. Int. J. Environ. Sci. Tech. 6(2), 175–182 (8 pages).Google Scholar
  16. Juang, D. F.; Chen, P. C., (2007). Treatment of polluted river water by a new constructed wetland. Int. J. Environ. Sci. Tech., 4(4), 481–488 (8 pages).CrossRefGoogle Scholar
  17. Kayser, K.; Kunst, S., (2005). Processes in vertical-flow reed beds — nitrification, oxygen transfer and soil clogging. Water Sci. Tech., 51(9), 177–184 (8 pages).Google Scholar
  18. Kantawanichkul, S.; Kladprasert, S.; Brix, H., (2009). Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus. Ecol. Eng., 35(2), 238–247 (10 pages).CrossRefGoogle Scholar
  19. Konnerup, D.; Thammarat Koottatep, T.; Brix, H., (2009). Treatment of domestic wastewater in tropical subsurface flow constructed wetlands planted with Canna and Heliconia. Ecol. Eng., 35(2), 248–257 (10 pages).CrossRefGoogle Scholar
  20. Koottatep, T.; Polprasert, C.; Oanh, N. T. K.; Heinss, U.; Montangero, A.; Strauss, M., (2001). Septage dewatering in vertical-flow constructed wetlands located in the tropics. Water Sci. Tech., 44(2-3), 181–188 (8 pages).Google Scholar
  21. Korkusuz, E. A.; Beklioglu, M.; Demirer, N.G., (2005). Comparison of the treatment performances of blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey. Ecol. Eng., 24(3), 187–200 (14 pages).CrossRefGoogle Scholar
  22. Li, L. F.; Li, Y. H.; Biswas, D. K.; Nian, Y. G.; Jiang G., (2008). Potential of constructed wetlands in treating the eutrophic water: Evidence from Taihu Lake of China., Bioresource Tech., 99(6), 1656–1663 (8 pages).CrossRefGoogle Scholar
  23. Lin, Y. F.; Jing, S. R.; Lee, D. Y.; Wang, T. W., (2002). Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 209(1-4), 169–184 (16 pages).CrossRefGoogle Scholar
  24. Lu, X. M.; Huang, M. S., (2010). Nitrogen and phosphorus removal and physiological response in aquatic plants under aeration conditions. Int. J. Environ. Sci. Tech., 7(4), 665–674 (10 pages).Google Scholar
  25. Luederitz, V.; Eckert, E.; Lange-Weber, M.; Lange, A.; Gersberg, R. M., (2001). Nutrient removal efficiency and resource economics of vertical flow and horizontal flow constructed wetlands. Ecol. Eng., 18(2), 157–171 (15 pages).CrossRefGoogle Scholar
  26. Mahvi, A.H., (2008). Application of agricultural fibers in pollution removal from aqueous solution. Int. J. Environ. Sci. Tech., 5(2), 275–285(11 pages).Google Scholar
  27. Merlin, G.; Pajean, J. L.; Lissolo, T., (2002). Performances of constructed wetlands for municipal wastewater treatment in rural mountainous area. Hydrobiologia, 469(1-3), 87–98 (12 pages).CrossRefGoogle Scholar
  28. Nameni, M.; Alavi, Moghadam M. R.; Arami, M., (2008). Adsorption of hexavalent chromium from aqueous solutions by wheat bran. Int. J. Environ. Sci. Tech., 5(2), 161–168 (8 pages).Google Scholar
  29. Nouri, J., Danehkar, A., Sharifipour, R., (2008). Evaluation of ecotourism potential in the northern coastline of the Persian Gulf. Environ. Geo., 55(3) 681–686 (6 pages).CrossRefGoogle Scholar
  30. Nwuche, C. O.; Ugoji, E. O, (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5(3), 409–414 (6 pages).Google Scholar
  31. Nwuche, C. O.; Ugoji, E. O, (2010). Effect of co-existing plant specie on soil microbial activity under heavy metal stress. Int. J. Environ. Sci. Tech., 7(4), 697–704 (8 pages).Google Scholar
  32. OECD., (1996). Guideline for testing of chemicals simulation test-aerobic sewage treatment. technical report. Organisation for Economic Co-operation and Development (OECD), Paris, France.Google Scholar
  33. Okafor, E.C.; Opuene, K., (2007). Preliminary, assessment of trace metals and polycyclic aromatic hydrocarbons in the sediments. Int. J. Environ. Sci. Tech., 4(2), 233–240 (8 pages).Google Scholar
  34. Prochaskaa, C. A.; Zouboulisa, A. I.; Eskridgeb, K. M., (2007). Performance of pilot-scale vertical-flow constructed wetlands, as affected by season, substrate, hydraulic load and frequency of application of simulated urban sewage. Ecol. Eng., 31(1), 57–66 (10 pages).CrossRefGoogle Scholar
  35. Prochaska, C. A.; Zouboulis, A. I., (2009). Treatment performance variation at different depths within vertical subsurface-flow experimental wetlands fed with simulated domestic sewage. Desalination, 237(1-3), 367–377 (11 pages).CrossRefGoogle Scholar
  36. Seo, D. Ch.; Cho, J. S.; Lee, H. J.; Heo, J. S., ( 2005). Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Res. 39(11), 2445–2457 (13 pages).CrossRefGoogle Scholar
  37. Stottmeister, U.; Wiessner, A.; Kuschk, P.; Kappelmeyer, U.; Kappstner, M.; Bederski, O.; Muller, R.A.; Moormann, H., (2003). Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv., 22(1-2), 93–117 (25 pages).CrossRefGoogle Scholar
  38. Tang, X. Q.; Huang, S. L.; Fciwem, M.S., (2009). Comparison of phosphorus removal between vertical subsurface flow constructed wetlands with different substrates. Water Environ. J. 23(3), 180–188 (9 pages).CrossRefGoogle Scholar
  39. Tsihrintzis, V. A.; Akratos, C. S.; Gikas, G. D.; Karamouzis, D.; Angelakis, A.N., (2007). Performance and cost comparison of a FWS and a VSF constructed wetland systems. Environ. Tech., 28(6), 621–628 (8 pages).CrossRefGoogle Scholar
  40. Zurita, F.; De, A.J.; Belmont, M.A., (2006). Performance of laboratory-scale wetlands planted with tropical ornamental plants to treat domestic wastewater. Water Qual. Res. J. Can., 41(4), 410–417 (8 pages).Google Scholar

Copyright information

© Islamic Azad University 2011

Authors and Affiliations

  1. 1.Department of Biology and ChemistryHuainan Normal UniversityHuainanChina
  2. 2.School of Life ScienceLinyi Normal UniversityLinyiChina
  3. 3.Environmental Science and Engineering DepartmentFudan UniversityShanghaiChina

Personalised recommendations