Skip to main content
Log in

Separation of metal laden waste using pulsating air dry material separator

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Separation of metal laden solid wastes for their recycling utilization using passive pulsed air and active pulsing air classifiers was studied. Laboratory investigation showed that the active pulsing air separator performs more efficiently than the passive pulsed air separator due to the ability to accurately control operating parameters. By studying the difference of drag coefficients of the particles moving through the airflow of varying Reynolds numbers, models of the dynamic particle motion were developed and a computer simulation was prepared. Results of the simulation were reported to predict the observed results with artificial tracing spheres being separated by the laboratory equipment. Two different, real world feed materials were separated with the laboratory scale active pulsing air classifier. The discarded catalyst consisting of precious metal components and sintered magnetic beads was separated with the separation efficiency, of 97.6 %. The second real-world feed, electronic scrap crushed to a size of 0.5 to 2 mm, showed a separation efficiency of 92.41 %. At the same time, the grade of the recovered concentrate of metals was above 98 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Batchelor, G. K., (1967). An introduction to fluid dynamics. Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  • Birkhoff, G., (1960). Hydrodynamics: A study in logic, fact, and similitude. Revised Ed., Princeton Univ. Press, New York, USA.

    Google Scholar 

  • Brush, L. M.; Wo, H. W.; Yen, B. C., (1964). Accelerated motion of a sphere in a viscous fluid. J. Hydrodynamics, 90(1), 149–160 (12 pages).

    Google Scholar 

  • Cao, Y. J.; Wen, X. F.; Zhao, Y. M.; Wang, Q. Q, (2002). Research on selective shredding of wasted printed circuit boards. J. China Univ. Min. Tech., 12(1), 25–29 (5 pages).

    Google Scholar 

  • Carstens, M. R., (1952). Accelerated motion of a spherical particle. Transactions of American Geophysics Union, 33(5), 713–721 (9 pages).

    Article  Google Scholar 

  • Crowe, P. B.; Peirce, J. J., (1988). Particle density and air-classifier performance. J. Environ. Eng., 114(2), 282–399 (18 pages).

    Article  Google Scholar 

  • Cui, J.; Forssberg, E., (2003). Mechanical recycling of waste electric and electronic equipment: A review. J. Hazard Mater., B 99(3), 243–263 (21 pages).

    Article  Google Scholar 

  • Duan, C. L.; He, Y. Q.; Wang, H. F.; Zuo, W. R., (2003). Separating mechanism of passive pulsing air classifier. J. China Univ. Min. Tech., 32(6), 725–728 (4 pages).

    CAS  Google Scholar 

  • Feng, X. D.; Huang, W. L.; Yang, C.; Dang, Z., (2009). Chemical speciation of fine particle bound trace metals. Int. J. Environ. Sci. Tech., 6(3), 337–346 (10 pages).

    CAS  Google Scholar 

  • He, Y. Q.; Wang, H. F.; Duan, C. L.; Song, S. L.; Zhao, Y. M., (2005). Airflow fields simulation on passive pulsing air classifiers. J. S. Afr. Ins. Min. Metal., 106(4), 525–531 (7 pages).

    Google Scholar 

  • He, Y. Q.; Zhao, Y. M.; Duan, C. L.; Zuo, W. R.; He, J. F., (2007). Mechanism of active pulsing air classification and its application to waste PCBs disposal. in: International Symposium on Environmental Science and Technology. Beijing, China 8–11 Nov.

  • He, Y. Q.; Zhao, Y. M., (2009). Technology of pulsing air separation. Chem. Eng. Industry Press, Beijing, China.

  • Hjelmfelt, A. T.; Mockros, L. F., (1967). Stokes flow behavior of an accelerating sphere. J. Eng. Mech., 93(6), 87–102 (16 pages).

    Google Scholar 

  • Houghton, E. L.; Carpenter, P. W., (2002). Aerodynamics for Engineering Students. 5th Edition, Butterworth — Heinemann, Oxford, MA, USA.

    Google Scholar 

  • Igwe, J. C.; Abia, A. A.; Ibeh, C. A., (2008). Adsorption kinetics and intraparticulate diffusivities of Hg, As and Pb ions on unmodified and thiolated coconut fiber. Int. J. Environ. Sci. Tech., 5(1), 83–92 (10 pages).

    CAS  Google Scholar 

  • Ito, S., (2003). Development of pneumatic separator using acceleration column. Metallic ore dressing abroad, 23(5), 38–42 (6 pages).

    Google Scholar 

  • Jackson, C. R.; Stessel, R. I.; Peirce, J. J., (1988). Passive pulsing air-classifier theory. J. Eng., 114(1), 106–119 (14 pages).

    CAS  Google Scholar 

  • Joseph, W. L., (1979). Coal Preparation. The American Institute of Mining, Metallurgical, and Petroleum Engineers, INC., New York.

    Google Scholar 

  • Karanfilian, S. K.; Kotas, T. J., (1978). Drag on a sphere in unsteady motion in a liquid at rest. J. Fluid Mech., 87(1), 85–96 (12 pages).

    Article  Google Scholar 

  • Khanfekr, A.; Arzani, K.; Nemati, A.; Hosseini, M., (2009). Production of perovskite catalysts on ceramic monoliths with nanoparticles for dual fuel system automobiles. Int. J. Environ. Sci. Tech., 6(1), 105–122 (8 pages).

    CAS  Google Scholar 

  • Kozlowski, J.; Mazurck, T.; Czyzyk, H., (2000). The recovering metals and alloys from the electronic scrap. Metal, 54(11), 645–649 (5 pages).

    CAS  Google Scholar 

  • Luga, A.; Morar, R.; Samuila, A., (2001). Electrostatic separation of metals and plastics from granular industrial wastes. IEE Proc. Sci. Meas. Tech., 148(2), 47–54 (8 pages).

    Article  Google Scholar 

  • Mockros, L. F.; Lai, R. Y. S., (1969). Validity of stokes theory for accelerating spheres. J. Eng. Mech., 95(3), 629–640 (12 pages).

    Google Scholar 

  • Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5(3), 409–414 (6 pages).

    CAS  Google Scholar 

  • Nwachukwu, M. A.; Feng, H.; Alinnor, J., (2010). Assessment of heavy metal pollution in soil and their implications within and around mechanic villages. Int. J. Environ. Sci. Tech., 7(2), 347–358 (12 pages).

    CAS  Google Scholar 

  • Olayiwola, O.; Walzel, P., (2007). Flow pulsation and modified dust surface for process heat transfer intensification. Int. J. Chem. Reactor Eng., 5(A71), 1–9 (9 pages).

    Google Scholar 

  • Peirce, J. J.; Wittenberg, N., (1984). Zig-zag configurations and air classifier performance. J. Energ. Eng., 110(1), 36–47 (12 pages).

    Article  Google Scholar 

  • Senden, M. M. G., (1978). Performance of zig-zag air classifiers at low particle concentrations. Ph. D Dissertation of the Eindhoven Univ. Tech., Eindhoven, Netherlands.

    Google Scholar 

  • Shah, B. A.; Shah, A. V.; Singh, R. R., (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int. J. Environ. Sci. Tech., 6(1), 77–90 (14 pages).

    CAS  Google Scholar 

  • Stessel, R. I.; Peirce, J. J., (1986). Comparing pulsing classifiers for waste-to-energy. J. Energ. Eng., 112(1), 1–13 (13 pages).

    Article  Google Scholar 

  • Stessel R. I., (1992). Controlling pulsed incompressible flow. J. Eng., 118(1), 1–17 (17 pages).

    Google Scholar 

  • Taub, J. B.; Peirce J. J., (1983). Instabilities in air classification of fuels. J. Energ. Eng., 109(2), 74–87 (14 pages).

    Article  Google Scholar 

  • Tehrani, S. M.; Karbassi, A. R.; Monavari, S. M.; Mirbagheri, S. A., (2010). Role of E-shopping management strategy in urban environment. Int. J. Environ. Res. 4(4), 681–690 (10 pages).

    Google Scholar 

  • Tippayawong, N.; Khongkrapan P., (2009). Development of a laboratory scale air plasma torch and its application to electronic waste treatment. Int. J. Environ. Sci. Tech., 6(3), 407–414 (8 pages).

    CAS  Google Scholar 

  • Wang, X. F.; Xiong, A. K., (2003). Advanced fluid mechanics. Huazhong Univ. Sci. Tech. Press, Wuhan, China.

    Google Scholar 

  • Wang, H. F., (2004). Study on the separation mechanism and airflow pattern of pulsed air classifiers. Master’s Thesis of China Univ. Min. Tech., Xuzhou, China.

    Google Scholar 

  • Winter, D.; Courtney, K., (2001). From here to eternity: recycling Hi-tech junk. Waste Age, 32(3), 186–190 (5 pages).

    Google Scholar 

  • Wu, J.; He, Ch., (2010). Experimental and modeling investigation of sewage solids sedimentation based on particle size distribution and fractal dimension. Int. J. Environ. Sci. Tech,. 7(1), 37–46 (10 pages).

    Google Scholar 

  • Zhang, S.; Forssberg, E.; Menad, N., (1998). Metals recycling from electronic scrap by air table separation-theory and application. In: The TMS Annual Meeting: EPD Congress, San Antonio, USA 16–19 Feb.

  • Zhang, Z. X.; Dong, Z. N., (2004). Viscous fluid mechanics. Tsinghua Univ. Press, Beijing, China.

  • Zhao, Y. M.; He, Y. Q.; Duan, C. L.; Zuo, W. R.; Wen, B. F., (2008). Simulation and application of the active pulsing air classification. in: Proceedings of the 11 th International Mineral Processing Symposium. Belek-Antalya, Turkey 11–14 Oct.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. He MSc, Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Duan, C., Wang, H. et al. Separation of metal laden waste using pulsating air dry material separator. Int. J. Environ. Sci. Technol. 8, 73–82 (2011). https://doi.org/10.1007/BF03326197

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326197

Keywords

Navigation