Lead removal from wastewater using fluted pumpkin seed shell activated carbon: Adsorption modeling and kinetics

  • A. I. Okoye
  • P. M. Ejikeme
  • O. D. Onukwuli


Activated carbon produced from fluted pumpkin (Telfairia occidentalis) seed shell was utilized for the removal of lead (II) ion from simulated wastewater. Adsorption tests were carried out in series of batch adsorption experiments. Several kinetic models (Bhattacharya-Venkobacher, Elovich, pseudo first and second order, intra-particle and film diffusion) were tasted for conformity to the experimental data obtained. The Langmuir and Freundlich adsorption models were also used to test the data. The amount of lead (II) ion adsorbed at equilibrium from a 200 mg/L solute concentration was 14.286 mg/g. The experimental data conform very well to the pseudo-second order equation where equilibrium adsorption capacities increased with increasing initial lead (II) concentration. The rate of the adsorption process was controlled by the film (boundary layer) diffusion as the film diffusion co-efficient values obtained from data analysis were of the order of 10 6cm2/s. From the plots, the linear regression coefficient (R2) of the Langmuir model was higher than that of the Freundlich: the adsorption isotherm obeyed the Langmuir model better than the Freundlich model.


Film diffusion Intraparticle diffusion Isotherm Kinetic model Lead (II) ions Sorption Telfairia occidentalis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Ghani, N. T.; Elchaghaby, G. A., (2007). Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption. Int. J. Environ. Sci. Tech., 4(4), 451–456 (6 pages).CrossRefGoogle Scholar
  2. Abdel-Ghani, N. T.; Hegazy, A. K.; El-Chaghaby, G. A., (2009). Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling. Int. J. Environ. Sci. Tech., 6(2), 243–248 (6 pages).Google Scholar
  3. Ademoroti, C. M. A., (1996). Environmental chemistry and toxicology. Pollution by heavy metals. Foludexpress, 171–172 (2 pages).Google Scholar
  4. Balkose, D.; Baltacioglu, H., (1992). Adsorption of heavy metal cations from aqueous solution by wool fiber. J. Chem. Tech. Biotech., 54(4), 393–397 (6 pages).CrossRefGoogle Scholar
  5. Boldaji, M. R.; Mahvi, A. H.; Dobaradaran, S.; Hosseini, S. S., (2009). Evaluating the effectiveness of a hybrid sorbent resin in removing fluoride from water. Int. J. Environ. Sci. Tech., 6(4), 629–632 (4 pages).CrossRefGoogle Scholar
  6. Chien, S. H.; Clayton, W. R., (1980). Application of elovich equation to the kinetics of phosphate release and sorption on soils. Soil Sci. Soc. Am. J., 44(2), 265–268 (4 pages).CrossRefGoogle Scholar
  7. Debnath, S.; Ghosh, U. C., (2008). Kinetics, isotherm and thermodynamics for Cr (III) and Cr (VI) adsorption from aqueous solutions by crystalline hydrous titanium oxide. J. Chem. Thermodynam., 40(1), 67–77 (11 pages).CrossRefGoogle Scholar
  8. Dönmez, G.; Aksu, Z.; Özturk A.; Kutsal, T., (1999). A comparative study on heavy metal biosorption characteristic of some algae. Process. Biochem., 34(9), 885–892 (8 pages).CrossRefGoogle Scholar
  9. Ejikeme, P. M.; Ochonogor, A. E., (2008). Adsorption kinetics of basic violet-1 removal by Penthaclethra mycrophylla woody-pod activated carbon. J. Chem. Soc. Nig., 33(1), 132–137 (6 pages).Google Scholar
  10. El-Nady, F. E.; Atta, M. M., (1996). Toxicity and bioaccumulation of metals in some marine biota from Egyptian coastal waters. J. Environ. Sci. Health, A-31(7), 1529–1545 (6 pages).Google Scholar
  11. Faust, S. D.; Osman, M. A., (1987). Adsorption process for water treatment. Butterworths, London.Google Scholar
  12. Ferguson, M. R.; Peterson, T. M.; Jeffers, A., (1989). In: Scheiner, B. J.; Doyle, F. M.; Kawerta, S. K. (Eds.), Proceedings of 1989 SME Symposium on Biotechnology in Minerals and Metal Processing, 24.Google Scholar
  13. Goyal, P.; Sharma, P.; Srivastava, S.; Srivastava, M. M., (2008). Saraca indica leaf powder for decontamination of lead: removal, recovery, adsorbent characterization and equilibrium modeling. Int. J. Environ. Sci. Tech., 5(1), 27–34 (8 pages).CrossRefGoogle Scholar
  14. Gueu, S.; Yao, B.; Adouby, K.; Ado, G., (2007). Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. Int. J. Environ. Sci. Tech. 4(1), 11–17 (6 pages).CrossRefGoogle Scholar
  15. Ho, Y. S.; John Wase, D. A.; Forster, C. F., (2000). Study of the sorption of divalent metal ions onto peat. Adsorpt. Sci. Tech., 18(7), 639–650 (12 pages).CrossRefGoogle Scholar
  16. Ho, Y. S.; Mckay, G., (1999). Pseudo second order model for sorption processes. Proc. Biochem., 34(5), 451–465 (15 pages).CrossRefGoogle Scholar
  17. Igbinosa, E. O.; Okoh, A. I., (2009). Impact of discharge wastewater effluents on the physico-chemical qualities of a receiving watershed in a typical rural community. Int. J. Environ. Sci. Tech., 6(2), 175–182 (8 pages).Google Scholar
  18. Israel, O. K.; Ekwumemgbo, P. A., (2008). Kinetics of the removal of ovalbumin from white wine model solution. Book of Proceedings, Chemical Society of Nigeria, Egboh, S. H. O. (Ed.), Warri, Nigeria, 413–418.Google Scholar
  19. Kadirvelu, K.; Namasivayam, C., (2003). Activated carbon from coconut coir pith as metal adsorbent: Adsorption of Cd (II) from aqueous solution. Adv. Environ. Res., 7(2), 471–478 (9 pages).CrossRefGoogle Scholar
  20. Kang, K. C.; Kim, S. S.; Choi, J. W.; Kwon, S. H., (2008). Sorption of Cu2+ and Cd2+ onto acid and base-pretreated granular activated carbon and activated carbon fiber samples. J. Ind. Eng. Chem., 14(1), 131–135 (5 pages).CrossRefGoogle Scholar
  21. Kiliç, M.; Keskin, M. E.; Mazlum S.; Mazlum, N., (2008). Effect of conditioning for Pb (II) and Hg (II) biosorption on waste activated sludge. Chem. Eng. Proc., 47(1), 31–40 (10 pages).CrossRefGoogle Scholar
  22. Kongsuwan, A.; Patnukao, P.; Pavasant, P., (2006). Removal of metal ion from synthetic waste water by activated carbon from Eucalyptus camaldulensis Dehn bark The 2nd. Joint International Conference on Sustainable Energy and Environment (SEE 2006).Google Scholar
  23. Mahvi, A. H., (2008). Application of agricultural fibers in pollution removal from aqueous solution. Int. J. Environ. Sci. Tech., 5(2), 275–285 (11 pages).CrossRefGoogle Scholar
  24. Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industries wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6(2), 183–190 (8 pages).Google Scholar
  25. Markovska, L. T.; Meshko, V. D.; Marinkovski., (2006). Modeling of adsorption kinetics of zinc onto granular activated carbon and natural zeolite. J. Serb. Chem. Soc., 71(8), 957–967 (11 pages).CrossRefGoogle Scholar
  26. Mattson, J. S.; Mark, H. B., (1971). Activated carbons: Surface chemistry and adsorption from solution. Marcel Dekker, New York.Google Scholar
  27. Nassar, M. M., (1997). The kinetics of basic dye removal using palm fruit bunch. Adsorpt. Sci. Tech., 15(8), 609–617 (9 pages).Google Scholar
  28. Ochonogor, A. E.; Ejikeme, P. M., (2005). Adsorption potentials of Cinnarium schweinfurthi nut shell activated carbon. J. Chem. Soc. of Nig., 30(2), 91–95 (5 pages).Google Scholar
  29. Okoro, I. A.; Ejike, E. N., (2007). Sorption models of Pb (II) removal from aqueous solution using common edible fruit wastes. Eur. J. Sci. Res., 17(2), 270–276 (7 pages).Google Scholar
  30. Okpareke, O. C.; Agha I. I.; Ejikeme, P. M., (2009). Removal of Cu (II), Cd (II) and Hg (II) ions from simulated waste water by Brachystagea Eurycoma seed pod: Intraparticle diffusivity and sorption studies, Paper presented at the 32nd. International Conference of the Chemical Society of Nigeria, Bauchi.Google Scholar
  31. Patel, R.; Suresh, S., (2008). Kinetic and equilibrium studies on the biosorption of reactive black 5 dye by Aspergillus foetidus. Bioresour. Tech., 99(1), 51–58 (8 pages).CrossRefGoogle Scholar
  32. Pimentel, P. M.; Melo, M. A. F.; Melo, D. M. A.; Assução, A. L. C.; Henrique, D. M.; Silva C. N. Jr.; González, G., (2008). Kinetics and thermodynamics of Cu (II) adsorption on oil shale wastes. Fuel Process. Tech., 89(1), 62–67 (6 pages).CrossRefGoogle Scholar
  33. Rafati, L.; Mahvi, A. H.; Asgari, A. R.; Hosseini, S. S., (2010). Removal of chromium (VI) from aqueous solutions using Lewatit FO36 nano ion exchange resin. Int. J. Environ. Sci. Tech., 7(1), 147–156 (10 pages).CrossRefGoogle Scholar
  34. Rahmani, K.; Mahvi, A. H.; Vaezi, F.; Mesdaghinia, A. R.; Nabizade, R.; Nazmara, S., (2009). Bioremoval of lead by use of waste activated sludge. Int. J. Environ. Res., 3(3), 471–476 (6 pages).Google Scholar
  35. Resmi, G.; Thampi, S. G.; Chandrakaran, S., (2010). Brevundimonas vesicularis check for this species in other resources: A novel bio-sorbent for removal of lead from wastewater. Int. J. Environ. Res., 4(2), 281–288 (8 pages).Google Scholar
  36. Shah, B. A.; Shah, A. V.; Singh R. R., (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int. J. Environ. Sci. Tech., 6(1), 77–90 (14 pages).CrossRefGoogle Scholar
  37. Sparks, D. L., (1986). Kinetics of reaction in pure and mixed systems in Soil Physical Chemistry, Boca Raton: CRC Press, 12–18.Google Scholar
  38. Venkata Mohan, S.; Ramanaiah, S. V.; Sarma, P. N., (2008). Biosorption of direct azo dye from aqueous phase onto Spirogyra sp. 102: Evaluation of kinetics and mechanistic aspects. Biochem. Eng. J., 38(1), 61–69 (9 pages).CrossRefGoogle Scholar
  39. Vinodhini, V.; Das, N., (2010). Relevant approach to assess the performance of sawdust as adsorbent of chromium (VI) ions from aqueous solutions. Int. Environ. Sci. Tech., 7(1), 85–92 (8 pages).CrossRefGoogle Scholar
  40. Weber, W. J.; Morris, J. C., (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89(1), 31–60 (30 pages).Google Scholar
  41. Zvinowanda, C. M.; Okonkwo, J. O.; Shabalala, P. N.; Agyei, N. M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech., 6(3), 425–434 (10 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2010

Authors and Affiliations

  • A. I. Okoye
    • 1
  • P. M. Ejikeme
    • 1
  • O. D. Onukwuli
    • 1
    • 2
  1. 1.Industrial and Biomass Laboratory, Department of Pure and Industrial ChemistryUniversity of NigeriaNsukkaNigeria
  2. 2.Department of Chemical EngineeringNnamdi Azikiwe UniversityAwkaNigeria

Personalised recommendations