Adsorption of lead, ethylenediaminetetraacetic acid and lead-ethylenediaminetetraacetic acid complex onto granular activated carbon



This study investigated simultaneous removal of lead and ethylenediaminetetraacetic acid from synthetic wastewater samples using granular activated carbon adsorption. Data from a 1 × 10−4 M lead-ethylenediaminetetraacetic acid adsorption isotherm study fitted well to Freundlich isotherm. Furthermore, for the pH-dependent 1 × 10−4 M lead-ethylenediaminetetraacetic acid study both lead and ethylenediaminetetraacetic acid adsorptions increased reaching values of 82 % and 93 % respectively at pH 5.8. However, a further increase in pH resulted in decreasing but near equal lead and ethylenediaminetetraacetic acid removals. Results for the 2 × 10−4 M lead-ethylenediaminetetraacetic acid system showed a behavior that was qualitatively similar to the 1 × 10−4 M lead-ethylenediaminetetraacetic acid findings. However, the 1×10−3 M lead-ethylenediaminetetraacetic acid study showed only a decreasing adsorption trend. An increasing-decreasing type lead/ethylenediaminetetraacetic acid adsorption behavior was also noted for the 1× 10−4 M lead/2 × 10−4 M ethylenediaminetetraacetic acid system. Nevertheless for the 2×10−4 M lead/1×10−4 M ethylenediaminetetraacetic acid system, lead removal at increased pH was comparatively higher. Furthermore, results from a continuous column study completed at 1 × 10−4 M lead and 0.75 × 10−4 M ethylenediaminetetraacetic acid showed high saturation times both for lead and ethylenediaminetetraacetic acid. Results from the present work show that a notable removal of aqueous phase lead and ethylenediaminetetraacetic acid could be achieved using activated carbon adsorption. The details related to the effect of pH and pollutants’ concentration on the overall adsorption efficiency, as reported in the present work, would be of much use for an effective carbon adsorption process design for the treatment of respective wastewaters.


Activated carbon Adsorption Ethylenediaminetetraacetic acid Lead 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Ghani, N. T.; Elchaghaby, G. A., (2007). Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption. Int. J. Environ. Sci. Tech., 4(4), 451–456 (6 pages).CrossRefGoogle Scholar
  2. Abdel-Ghani, N. T.; Hegazy, A. K.; El-Chaghaby, G. A., (2009). Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling. Int. J. Environ. Sci. Tech., 6(2), 243–248 (6 pages).Google Scholar
  3. Abdulkarim, M.; Abu Al-Rub, F., (2004). Adsorption of lead ions from aqueous solution onto activated carbon and chemically-modified activated carbon prepared from date pits. Adsorp. Sci. Tech., 22(2), 119–134 (15 pages).CrossRefGoogle Scholar
  4. Aghamohammadi, N.; Hamidi, A. A.; Hasnain, I. M.; Zinatizadeh, A. A.; Nasrollahzadeh Saravi, H.; Ghafari, Sh., (2007). Performance of a powdered activated carbon (PAC) augmented activated sludge process treating semi-aerobic leachate. Int. J. Environ. Res., 1(2), 96–103 (8 pages).Google Scholar
  5. Allison, J. D.; Brown, D. S.; Novo-Gradac, K. J., (1991). MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems, Version 3.0 User’s Manual, U.S. Environmental Protection Agency, EPA/600/3-91/021, Athens, Georgia.Google Scholar
  6. Amrate, S.; Akretche, D. E.; Innocent, C.; Seta, P., (2006). Use of cation-exchange membranes for simultaneous recovery of lead and EDTA during electrokinetic extraction. Desalination, 193(1–3), 405–410 (6 pages).CrossRefGoogle Scholar
  7. Aroua, M. K.; Yin, C. Y.; Lim, F. N.; Kan, W. L.; Daud, W. M. A. W., (2009). Effect of impregnation of activated carbon with chelating polymer on adsorption kinetics of Pb2+. J. Hazard. Mater., 166(2–3), 1526–1529 (4 pages).CrossRefGoogle Scholar
  8. Awwad, N. S.; Daifuallah, A. A. M.; Ali, M. M. S., (2008). Removal of Pb2+, Cd2+, Fe3+, and Sr2+ from aqueous solution by selected activated carbons derived from date pits. Solvent Extr. Ion Exc., 26(6), 764–782 (19 pages).CrossRefGoogle Scholar
  9. Bargar, J. R.; Persson, P.; Brown, G. E. Jr., (1999). Outer-sphere adsorption of Pb(II)EDTA on goethite. Geochim. Cosmochim. Ac., 63(19–20), 2957–2969 (13 pages).CrossRefGoogle Scholar
  10. Barton, S. S.; Evans, M. J. B.; Halliop, E.; MacDonald, J. A. F., (1997). Acidic and basic sites on the surface of porous carbon. Carbon, 35(9), 1361–1366 (6 pages).CrossRefGoogle Scholar
  11. Chen, J. P.; Wang, X., (2000). Removing copper, zinc, and lead ion by granular activated carbon in pretreated fixed-bed columns. Separ. Purif. Tech., 19(3), 157–167 (11 pages).CrossRefGoogle Scholar
  12. Chen, J. P.; Wu, S., (2004). Simultaneous adsorption of copper ions and humic acid onto an activated carbon. J. Coll. Inter.Sci., 280(2), 334–342 (9 pages).CrossRefGoogle Scholar
  13. Corapcioglu, M. O.; Huang, C. P., (1987). The surface acidity and characterization of some commercial activated carbons. Carbon, 25(4), 569–578 (10 pages).CrossRefGoogle Scholar
  14. Dudzinska, M. R.; Clifford, D. A., (1992). Anion exchange studies of lead-EDTA complexes. React.Polymer., 16(1), 71–80 (10 pages).CrossRefGoogle Scholar
  15. Faur-Brasquet, C.; Kadirvelu, K.; Le Cloirec, P., (2002). Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: Adsorption competition with organic matter. Carbon, 40(13), 2387–2392 (6 pages).CrossRefGoogle Scholar
  16. Gaur, N.; Dhankhar, R., (2009). Removal of Zn+2 ions from aqueous solution using Anabaena variabilis: Equilibrium and kinetic studies. Int. J. Environ. Res., 3(4), 605–616 (12 pages).Google Scholar
  17. Giraldo, L.; Moreno-Piraján, J. C., (2008). Pb2+ adsorption from aqueous solutions on activated carbons obtained from lignocellulosic residues. Brazil. J. Chem. Eng., 25(1), 143–151 (9 pages).CrossRefGoogle Scholar
  18. Goel, J.; Kadirvelu, K.; Rajagopal, C.; Garg, V. K., (2005). Investigation of adsorption of lead, mercury and nickel from aqueous solutions onto carbon aerogel. Journal of Chemical Technology and Biotechnology, 80(4), 469–476 (8 pages).CrossRefGoogle Scholar
  19. Gueu, S.; Yao, B.; Adouby, K.; Ado, G., (2007). Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. Int. J. Environ. Sci. Tech., 4(1), 11–17 (7 pages).CrossRefGoogle Scholar
  20. Igbinosa, E. O.; Okoh, A. I., (2009). Impact of discharge wastewater effluents on the physico-chemical qualities of a receiving watershed in a typical rural community. Int. J. Environ. Sci. Tech., 6(2), 175–182 (8 pages).Google Scholar
  21. Issabayeva, G.; Aroua, M. K.; Sulaiman, N. M. N., (2006). Removal of lead from aqueous solutions on palm shell activated carbon. Bioresour. Tech., 97(18), 2350–2355 (6 pages).CrossRefGoogle Scholar
  22. Jiraroj, D.; Unob, F.; Hagége, A., (2006). Degradation of Pb-EDTA complex by a H2O2/UV process. Water Res., 40(1), 107–112 (6 pages).CrossRefGoogle Scholar
  23. Juang, R. S.; Wang, S. W.; Lin, L. C., (1999). Simultaneous recovery of EDTA and lead(II) from their chelated solutions using a cation exchange membrane. J. Membr. Sci., 160(2), 225–233 (9 pages).CrossRefGoogle Scholar
  24. Kadirvelu, K.; Faur-Brasquet, C.; Le Cloirec, P., (2000). Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths. Langmuir, 16(22), 8404–8409 (6 pages).CrossRefGoogle Scholar
  25. Kim, C.; Ong, S. K., (1999). Recycling of lead-contaminated EDTA wastewater. J. Hazard. Mater., 69(3), 273–286 (14 pages).CrossRefGoogle Scholar
  26. Kolodynska, D.; Skwarek, E.; Hubicki, Z.; Janusz, W., (2009). Effect of adsorption of Pb(II) and Cd(II) ions in the presence of EDTA on the characteristics of electrical double layers at the ion exchanger/NaCl electrolyte solution interface. J. Coll. Inter. Sci., 333(2), 448–456 (9 pages).CrossRefGoogle Scholar
  27. Krishnan, K. A.; Sheela, A.; Anirudhan, T., (2003). Adsorption of lead and lead chelates on activated carbons. J. Chem. Tech. Biotech., 78(6), 642–653 (12 pages).CrossRefGoogle Scholar
  28. Li, Y.-H.; Di, Z.; Ding, J.; Wu, D.; Luan, Z.; Zhu, Y., (2005). Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res., 39(4), 605–609 (5 pages).CrossRefGoogle Scholar
  29. Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industries wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6(2), 183–190 (7 pages).Google Scholar
  30. Oviedo, C.; Rodriguez, J., (2003). EDTA: The chelating agent under environmental scrutiny. Quim. Nova, 26(6), 901–905 (5 pages).CrossRefGoogle Scholar
  31. Palacios, H.; Iribarren, I.; Olalla, M. J.; Cala, V., (2002). Lead poisoning of horses in the vicinity of a battery recycling plant. Sci. Total Environ., 290(1–3), 81–89 (9 pages).CrossRefGoogle Scholar
  32. Reed, B. E.; Arunachalam, S., (1994). Use of granular activated carbon for lead removal. J.Environ. Eng., 120(2), 416–436 (21 pages).CrossRefGoogle Scholar
  33. Reed, B. E.; Arunachalam, S.; Thomas, B., (1994). Removal of lead and cadmium from aqueous waste streams using granular activated carbon (GAC) columns. Environ. Prog., 13(1), 60–64 (5 pages).Google Scholar
  34. Riley, R. G.; Zachara, J. M.; Wobber, F. J., (1992). Chemical contaminants on DOE lands and selection of contaminated mixtures for subsurface science research, U.S. Department of Energy, DOE/ER-0547T.Google Scholar
  35. Shah, B. A.; Shah, A. V.; Singh R. R., (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int. J. Environ. Sci. Tech., 6(1), 77–90 (14 pages).CrossRefGoogle Scholar
  36. Sreejalekshmi, K. G.; Anoop Krishnan, K.; Anirudhan, T. S., (2009). Adsorption of Pb(II) and Pb(II)-citric acid on sawdust activated carbon: Kinetic and equilibrium isotherm studies. J. Hazard. Mater., 161(2–3), 1506–1513 (8 pages).CrossRefGoogle Scholar
  37. Swanson, J. L., (1984). Organic complexant-enhanced mobility of toxic elements in low-level wastes, Pacific Northwest Lab., PNL-SA-12518, Washington.CrossRefGoogle Scholar
  38. Swanson, J. L., (1985). Organic complexant-enhanced mobility of toxic elements in low-level wastes, Pacific Northwest Lab., PNL-4965-8, Washington.Google Scholar
  39. Taylor, R. M.; Kuennen, R. W., (1994). Removing lead in drinking water with activated carbon. Environ. Prog., 13(1), 65–71 (7 pages).Google Scholar
  40. Vohra, M. S.; Davis, A. P., (1998). Adsorption of Pb(II), EDTA, and Pb(II)-EDTA onto TiO2. J. Coll. Intere Sci., 198, 18–26 (9 pages).CrossRefGoogle Scholar
  41. Vohra, M. S.; Davis, A. P., (2000). TiO2-assisted photocatalysis of lead-EDTA. Water Res., 34(3), 952–964 (13 pages).CrossRefGoogle Scholar
  42. Xia, W.; Gao, H.; Wang, X.; Zhou, C.; Liu, Y.; Fan, T.; Wang, X., (2009). Application of EDTA decontamination on soils affected by mining activities and impact of treatment on the geochemical partition of metal contaminants. J. Hazard. Mater., 164(2–3), 936–940 (5 pages).CrossRefGoogle Scholar
  43. Zhang, K.; Cheung, W. H.; Valix, M., (2005). Roles of physical and chemical properties of activated carbon in the adsorption of lead ions. Chemosphere, 60(8), 1129–1140 (12 pages).CrossRefGoogle Scholar
  44. Zhu, J.; Yang, J.; Deng, B., (2009). Ethylenediamine-modified activated carbon for aqueous lead adsorption. Environ. Chem. Lett., 12(2), 113–117 (5 pages).Google Scholar
  45. Zvinowanda, C. M.; Okonkwo, J. O.; Shabalala, P. N.; Agyei, N.M., (2009). A novel ad’sorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech. 6(3), 425–434 (10 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2010

Authors and Affiliations

  1. 1.Environmental Engineering Program, Civil Engineering DepartmentKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia

Personalised recommendations