Study of mango biomass (Mangifera indica L) as a cationic biosorbent

  • M. A. Ashraf
  • M. J. Maah
  • I. Yusoff


Unfertilizable fruiting buds of mango plant Mangifera Indica L, an agrowaste, is used as a biomass in this study. The efficacy of the biosorbent was tested for the removal of lead, copper, zinc and nickel metal ions using batch experiments in single and binary metal solution under controlled experimental conditions. It is found that metal sorption increases when the equilibrium metal concentration rises. At highest experimental solution concentration used (150 mg/L), the removal of metal ions were 82.76 % for lead, 76.60 % for copper, 63.35 % for zinc and 59.35 % for nickel while at lowest experimental solution concentration (25 mg/L), the removal of metal ions were 92.00% for lead, 86.84 % for copper, 83.96 % for zinc and 82.29 % for nickel. Biosorption equilibrium isotherms were plotted for metal uptake capacity (q) against residual metal concentrations (Cf) in solution. The q versus Cf sorption isotherm relationship was mathematically expressed by Langmuir and Freundlich models. The values of separation factor were between zero and one indicating favourable sorption for four tested metals on the biosorbent. The surface coverage values were approaching unity with increasing solution concentration indicating effectiveness of biosorbent under investigation. The non-living biomass of Mangifera indica L present comparable biosorption capacity for lead, copper, zinc and nickel metal ions with other types of biosorbent materials found in literature and is effective to remove metal ions from single metal solutions as well as in the presence of other co-ions with the main metal of solution.


Biomass Efficacy Isotherm Multi metal Single metal Sorption 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Ghani, N. T.; Elchaghaby, G. A., (2007). Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption. Int. J. Environ. Sci. Tech., 4(4), 451–456 (6 pages).CrossRefGoogle Scholar
  2. Abdel-Ghani, N. T.; Hegazy, A. K.; El-Chaghaby, G. A., (2009). Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling. Int. J. Environ. Sci. Tech., 6(2), 243–248 (6 pages).Google Scholar
  3. Ahalya, N.; Kanamadi, R. D.; Ramachandra, T. V., (2005). Biosorption of Chromium (VI) from aqueous solution by the husk Bengal gram (Cicer Arientinum). Eelect. J. Biotech. 8(3), 258–264 (7 pages).CrossRefGoogle Scholar
  4. Ahalya, N.; Ramachandra, T. V.; Kanamadi, R. D., (2003). Biosorption of Heavy Metals. Res. J. Chem. Environ., 7(4), 71–79 (9 pages).Google Scholar
  5. Ankit, B.; Silke, S., (2008). Assessment of biosorption mechanism for Pb binding by citrus pectin. ep. Purif. Tech., 63(3), 577–581 (5 pages).CrossRefGoogle Scholar
  6. Aravindhan, R.; Bhaswant,SM.; Sreeram, K., J.; Raghava R., J.; Balachandran, U., N., (2009). Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study. Biores. Tech., 101(5), 1466–1470 (5 pages).Google Scholar
  7. Asku, Z., (1992). The biosorption of Cu (II) by C. vulgaris and Z. ramigera. Environ. Tech., 13(1), 579–586 (8 pages).Google Scholar
  8. Ceribasi, I. H.; Yetis, U., (2001). Biosorption of Ni (II) and Pb (II) by Phanerochaete chrysosporium from a binary metal system-Kinetics. Water SA., 27(1), 15–20 (6 pages).Google Scholar
  9. Chen, C.; Wang, J. L., (2007). Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae. Biomed. Environ. Sci., 20(6), 478–482 (5 pages).Google Scholar
  10. Chien, M. K.; Shih, L. H., (2007). An empirical study of the implementation of green supply chain management practices in the electrical and electronic industry and their relation to organizational performances. Int. J. Environ. Sci. Tech., 4(3), 383–394 (12 pages).Google Scholar
  11. Devi Prasad, A. G; Abdulsalam, M. A., (2009). Biosorption of Fe (II) from aqueous solution using Tamarind Bark and potato peel waste: equilibrium and kinetic Studies. J. Appl. Sci. Environ. San., 4(3), 273–282 (10 pages).Google Scholar
  12. Friis; M. K., (1986). Biosorption of uranium and lead by Streptomyces longwoodenses. Biotech. Bioeng., 28(1), 21–28 (8 pages).CrossRefGoogle Scholar
  13. Fourest, E.; Roux, C. J., (1992). Heavy metal biosorption by fungal mycilial byproduct; mechanism and influence of pH. Appl. Microbiol. Biotech., 37(3), 399–403 (5 pages).CrossRefGoogle Scholar
  14. Gadd, G. M., (2009). Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Tech. Biotech., 84(1), 13–28 (16 pages).CrossRefGoogle Scholar
  15. Gadd, G. M.; De Rome, L., (1988). Biosorption of copper by fungal melanine. Appl. Microbiol. Biotech., 29(6), 610–617 (8 pages).CrossRefGoogle Scholar
  16. Galun, M.; Keller, P.; Malki, D.; Gallun, E.; Seigel, S.M.; Seigel, B. Z., (1983). Removal of uranium (VI) from solutions by fungal biomass and fungal wall related biopolymers. Science, 219(4582), 285–286 (3 pages).CrossRefGoogle Scholar
  17. Hanif, M. A.; Nadeem, R.; Bhatti, H. N.; Ahmad, N. R.; Ansari, T. M., (2007). Ni (II) biosorption by Cassia fistula (Golden Shower) biomass. J. Hazard. Mater., 139(2), 345–355 (11 pages).CrossRefGoogle Scholar
  18. Hashim, M. A.; Chu, K. H., (2004). Biosorption of cadmium by brown, green and red seaweeds. Chem. Eng. J., 97(2–3), 249–255 (7 pages).CrossRefGoogle Scholar
  19. Horsefall, M. J.; Spiff, A. I., (2005). Effect of metal ion concentration on biosorption of Pb2+ and Cd2+ by Caladium bicolor (Wild Cocoyam). Afr. J. Biotech., 4(2), 191–196 (6 pages).Google Scholar
  20. King, P.; Anuradha, k.; Beena Lahari, S.; Prasanna Kumar, Y.; Prasad, V. S. R. K., (2007). Biosorption of zinc from aqueous solution using Azadirachta indica bark: Equilibrium and kinetics studies. J. Hazard. Mater., 152(1), 324–329 (7 pages).CrossRefGoogle Scholar
  21. Kratochvil, D.; Velesky, B., (1998). Biosorption of Cu from ferruginous wastewater by algal biomass. Water Res., 32(9), 2760–2768 (9 pages).CrossRefGoogle Scholar
  22. Mamoona, A.; Nadeem, M. Z.; Sadaf, Y.; Raziya, N., (2008). The use of Neem biomass for the biosorption of zinc from aqueous solutions. J. Hazard. Mater., 157(2–3), 534–540 (7 pages).Google Scholar
  23. Mangollon, L.; Rodriquez, R.; Larrota, W.; Ramirez, N.; Torres. R., (1998). Biosorption of nickel using filamentous fungi. Appl. Biochem. Bioteh., 70–72(1), 593–601 (9 pages).CrossRefGoogle Scholar
  24. Masud, H. S.; Anantharaman, N., (2005). Studies on Cu (II) biosorption using Thiobacillus ferooxidans. J. Uni. Chem. Tech. Metall., 40(3), 227–234 (8 pages).Google Scholar
  25. Nuhoglu, Y.; Malkoc, E.; Gurses, A.; Canpolat, N., (2002). The removal of Cu (II) from aqueous solutions by Ulothrix zonata. Biores. Tech., 85(3), 331–333 (3 pages).CrossRefGoogle Scholar
  26. Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5(3), 409–414 (6 pages).CrossRefGoogle Scholar
  27. Priyantha, N.; Navaratne, A.; Ekanayake, C. B.; Ratnayake, A., (2008). Solvent extraction followed by ultraviolet detection for investigation of tetramethylthiuram disulfide at soil-water interface. Int. J. Environ. Sci. Tech., 5(4), 547–554 (8 pages).CrossRefGoogle Scholar
  28. Saeed, A.; Iqbal, M.; Akhtar, M.;W., (2005). Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J Hazard. Mater., 117(1), 65–73 (9 pages).CrossRefGoogle Scholar
  29. Sakaguchi, T.; Nakajima, A., (1991). Accumulation of heavy metals such as uranium and thorium by microorganisms. Smith, R.W., Misra.M. (Eds.), Mineral Bioprocessing. The Minerals, Metals and Materials Society.Google Scholar
  30. Samarghandi, M. R.; Nouri, J.; Mesdaghinia, A. R.; Mahvi, A. H.; Nasseri, S.; Vaezi, F., (2007). Efficiency removal of phenol, lead and cadmium by means of UV/TiO2/H2O2 processes. Int. J. Environ. Sci. Tech., 4(1), 19–25 (7 pages).CrossRefGoogle Scholar
  31. Shah, B. A.; Shah, A. V.; Singh R. R., (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int. J. Environ. Sci. Tech., 6(1), 77–90 (14 pages).CrossRefGoogle Scholar
  32. Soltanali, S.; Shams Hagani, Z., (2008). Modeling of air stripping from volatile organic compounds in biological treatment processes. Int. J. Environ. Sci. Tech., 5(3), 353–360 (8 pages).CrossRefGoogle Scholar
  33. Tyagi, O. D.; Mehra, M., (1994). A Text Book of Environmental Chemistry 1st. Ed. Anmol publication, 289–290 (17 pages).Google Scholar
  34. Tsezos, M.; Volesky, B., (1982). The mechanism of uranium biosorption by Rhizopus arrhizus. Biotech. Bioeng., 24(2), 385–401 (17 pages).CrossRefGoogle Scholar
  35. Vijayaraghavan, K.; Padmesh, T. V. N.; Palanivelu, K.; Velan, M., (2006). Biosorption of nickel (II) ions onto Sargassm wightii: Application of two-parameter and three-parameter isotherms models. J. Hazard. Mater., B133(1–3), 304–308 (5 pages).CrossRefGoogle Scholar
  36. Volesky, B., (2003). Sorption and biosorption, BV. Sorbex, Inc. Montreal, Canada. Section 6.1, 103–116.Google Scholar
  37. Yan, G.; Viraraghavan, T., (2000). Effect of pretreatment on the bioadsorption of heavy-metal on Mucor rouxii. Water SA., 26(1), 119–123 (5 pages).Google Scholar
  38. Yong K.; Lee, J. U.; Kim, K. W., (2008). Biosorption of Pb (II) from synthetic waste water onto Pseudomonas aeruginosa. Int. J. Environ. Pollut., 34(1–4) 195–202 (8 pages).Google Scholar
  39. Zhang, Y.; Banks, C., (2005). The interaction between Cu, Pb, Zn and Ni in their biosorption onto polyurethane-immobilised Sphagnum moss. J. Chem. Tech. Biotech. 80(11), 1297–1305 (9 pages).CrossRefGoogle Scholar
  40. Zvinowanda, C. M.; Okonkwo, J. O.; Shabalala, P. N.; Agyei, N. M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech., 6(3), 425–434 (10 pages).Google Scholar

Copyright information

© Islamic Azad University 2010

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of MalayaKuala LumpurMalaysia
  2. 2.Department of GeologyUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations