Optimization of product line design for environmentally conscious technologies in notebook industry



Promotion of green technologies related to notebook computer will have significant benefits in the environment. Notebook companies need to make a careful market assessment for green technologies. Due to the variety of consumer preferences for green technologies, as well as a hot competitive climate in notebook market, consumer preferences should be taken into consideration during the assessment process. This study classifies the green technologies of notebook industry. Some green technologies are not controlled by the environmental regulations but are popular among customers. This study named this kind of technologies niche green technologies. The product line design model can evaluate the design scheme based on customer preferences. Therefore, this study uses conjoin analysis to investigate the consumers’ preferences for assorted technology. Subsequently, product line design model is utilized to seek the optimal scheme of niche green technologies adoption based on the consumers’ preference. Results of conjoint analysis reveal that consumers value two attributes, including price and size. Furthermore, the preferences for niche green technologies in solid state drive disk and light emitting diode backlight surpass the former technology. After the assessment of market situation with product line design model, two types of niche green technologies, including lithium polymer battery and light emitting diode backlight are suggested for the adoption of new products design.


Conjoint analysis Consumer preferences Environmental regulations Green technologies Notebook computer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexouda, G., (2002). An evolutionary algorithm based method for the product line design using the share of choices criterion. Second Hellenic Conference on Artificial Intelligence, 321–330.Google Scholar
  2. Alexouda, G, (2004). An evolutionary algorithm approach to the share of choices problem in the product line design. Comput. Oper. Res., 31(13), 2215–2229 (15 pages).CrossRefGoogle Scholar
  3. Alexouda, G., (2005). An user-friendly marketing decision support system for the product line design using evolutionary algorithms. Decis. Supp. Sys., 38(4), 495–509 (15 pages).CrossRefGoogle Scholar
  4. Alexouda, G.; Paparrizos, K., (1999). A genetic algorithm approach to the buyer’s welfare problem of product line design: An comparative computational study. Yugoslav J. Oper. Res., 9(2), 223–233 (11 pages).Google Scholar
  5. Alexouda, G; Paparrizos, K., (2001). A genetic algorithm approach to the product line design problem using the seller’s return criterion: An extensive comparative computational study. Eur. J. Oper. Res., 134(1), 165–178 (14 pages).CrossRefGoogle Scholar
  6. Balakrishnan, P. V.; Gupta, R.; Jacob, V. (2004). Development of hybrid genetic algorithms for product line designs. IEEE T. Syst. Man Cyb., 34(1), 468–483 (16 pages).CrossRefGoogle Scholar
  7. Balakrishnan, P. V.; Jacob, V. S., (1996). Genetic algorithms for product design. Manage. Sci., 42(8), 1105–1117 (13 pages).CrossRefGoogle Scholar
  8. Bandyopadhyay, G.; Chattopadhyay, S., (2007). Single hidden layer artificial neural network models versus multiple linear regression model in forecasting the time series of total ozone. Int. J. Environ. Sci. Tech., 4(1), 141–150 (10 pages) CrossRefGoogle Scholar
  9. Chen, C. C., (2009). Environmental impact assessment framework by integrating scientific analysis and subjective perception. Int. J. Environ. Sci. Tech., 6(4), 605–618 (14 pages).Google Scholar
  10. Chien, M. K.; Shih, L. H., (2007). An empirical study of the implementation of green supply chain management practices in the electrical and electronic industry and their relation to organizational performances. Int. J. Environ. Sci. Tech., 4(3), 383–394 (12 pages).Google Scholar
  11. Dobson, G.; Kalish, S., (1988). Positioning and pricing a product line. Marketing Sci., 7(2), 107–125 (19 pages).CrossRefGoogle Scholar
  12. Green, P. E.; Krieger, A. M., (1985). Models and heuristics for product line selection. Market. Sci., 4(1) 1–19 (19 pages).CrossRefGoogle Scholar
  13. Green, P. E.; Krieger, A. M., (1989). Recent contribution to optimal product positioning and buyer segmentation. Eur. J. Opl. Res., 41(2), 127–141 (15 pages).CrossRefGoogle Scholar
  14. Green, P. E.; Krieger, A. M., (1991). Product Design Strategies for Target Market Positioning. J. Prod. Innovat. Manage., 8(3), 189–202 (14 pages).CrossRefGoogle Scholar
  15. Green, P. E.; Srinivasan, V., (1978). Conjoint analysis in consumer research: Issues and outlook. J. Cons. Res., 5(2), 103–123 (21 pages).CrossRefGoogle Scholar
  16. Gross, R. A.; Kalra, B., (2002). Biodegradable polymers for the environment. Science, 297(5582), 803–807 (5 pages).CrossRefGoogle Scholar
  17. Hsu, C. W.; Hu, A. H., (2008). Green supply chain management in the electronic industry. Int. J. Environ. Sci. Tech., 5(2), 205–216 (12 pages).CrossRefGoogle Scholar
  18. Huang, P. S.; Shih, L. H., (2009). Effective environmental management through environmental knowledge management. Int. J. Environ. Sci. Tech., 6(1), 35–50 (16 pages).CrossRefGoogle Scholar
  19. Kang, Y.; Lee, W.; Suh, D. H.; Changjin, L., (2003). Solid polymer electrolytes based on cross linked-polysiloxane-g-oligo (ethylene oxide): Ionic conductivity and electrochemical properties. J. Power. Sour., 119–121, 448–453 (6 pages).CrossRefGoogle Scholar
  20. Kohli, R.; Sukumar, R., (1990). Heuristics for product-line design using conjoint analysis. Manage. Sci., 36(12), 1464–1477 (14 pages).CrossRefGoogle Scholar
  21. Krieger, A. M.; Green, P. E.; Wind, Y. J., (2004). Adventures in conjoint analysis: A practitioner’s guide to trade-off modeling and applications. Monograph, University of Pennsylvania.Google Scholar
  22. Li, H.; Azarm, S., (2002). An approach for product line design selection Under Uncertainty and Competition. J. Mech. Design, 124(3), 385–392 (8 pages).CrossRefGoogle Scholar
  23. Masuda, Y.; Nakayama, M.; Wakihara, M., (2007). Fabrication of all solid-state lithium polymer secondary batteries using PEG-borate/aluminate ester as plasticizer for polymer electrolyte. Solid. State. Ionics., 178(13–14), 981–986 (6 pages).CrossRefGoogle Scholar
  24. Nair, S. K.; Thakur, L. S.; Wen, K. W., (1995). Near optimal solutions for product line design and selection: Beam search heuristics. Manage. Sci., 41(5), 767–785 (19 pages).CrossRefGoogle Scholar
  25. Nnorom I. C.; Osibanjo O., (2009). Heavy metal characterization of waste portable rechargeable batteries used in mobile phones. Int. J. Environ. Sci. Tech., 6(4), 641–650 (11 pages).Google Scholar
  26. Steiner, W.; Hruschka, H., (2003). Genetic algorithms for product design: How well do they really work? Int. J. Market. Res., 45(2), 229–240 (12 pages).Google Scholar
  27. Szymanski, D.; Bharadwaj, S.; Varadarajan, R. (1993). An analysis of the market share profitability relationship. J. Market., 29, 1–18 (18 pages).Google Scholar
  28. Tehrani, S. M.; Karbassi, A. R.; Ghoddosi, J.; Monavvari, S. M.; Mirbagheri, S. A., (2009). Prediction of energy consumption and urban air pollution reduction in e-shopping adoption. J. Food, Agri. Environ., 7(3and 4), 898–903 (7 pages).Google Scholar
  29. Tsai, H. C., (2007). An investigation into EMI-induced noise in nanometer multi-quantum well InGaN LEDs. Opt. Commun., 273(2), 311–319 (9 pages).CrossRefGoogle Scholar
  30. Tuzkaya, G.; Gülsün, B., (2008). Evaluating centralized return centers in a reverse logistics network: An integrated fuzzy multi-criteria decision approach. Int. J. Environ. Sci. Tech., 5(3), 339–352 (15 pages).CrossRefGoogle Scholar
  31. Wittink, D. R.; Cattin, P., (1989). Commercial use of conjoint analysis: An update. J. Marketing., 53(3), 91–96 (6 pages).CrossRefGoogle Scholar
  32. Zufryden, F. S., (1979). ZIPMAP-A zero-one integer programming model for market segmentation and product positioning. J. Oper. Res. Soc., 30(1), 63–70 (8 pages).Google Scholar

Copyright information

© Islamic Azad University 2010

Authors and Affiliations

  1. 1.Department of Resources EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations