Advertisement

Zinc availability in relation to selected soil properties in a crude oil polluted eutric tropofluvent

  • M. C. Chukwuma
  • E. T. Eshett
  • E. U. Onweremadu
  • M. A. Okon
Article

Abstract

The study investigated zinc availability in relation to selected soil properties in a crude-oil-polluted Eutric Tropofluvent in Egbema, Southeastern Nigeria. For this purpose, three treatments have been applied: unpolluted soil, polluted without vegetation and polluted with vegetation with five replicates arranged in a randomized complete block design. Guided by transect sampling technique, soil sampling was carried out in June 2008. Soil samples were collected from the three different land units using soil auger at a depth of 0–20 cm. Standard laboratory procedures were adopted in analysing the soils. Soil generated data were subjected to analysis of variance and correlation analysis. Results showed highly significant variation (p = 0.01) in bulk density, porosity, silt: clay ratio, pH, effective cation exchange capacity, percent base saturation, total nitrogen, organic matter, available phosphorus, calcium: magnesium ratio and zinc. It was found that zinc was higher in crude oil polluted soils than in non-polluted soil and it was below critical limits. Zinc availability in relation to selected soil properties in the crude oil polluted soils indicated that clay and organic matter did not affect zinc availability, while pH and effective cation exchange capacity did. A study on zinc dynamics in crude-oil-polluted soils will certainly provide further information on the management of crude-oil-polluted soils since it is one of the key micronutrient for crop productivity.

Keywords

Eutric tropofluvent Soil properties Spillage Tropical soils Zinc availability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alloway, B. J., (1995). Heavy metals in soils. 2nd Ed. Chapman and Hall, Glasgow, 34.Google Scholar
  2. Alvarez-Benedi, J.; Munoz-Carpena, R., (2005). Soil, water, solute process characterization. An integrated approach. C.R.C Press, Florida. 538.Google Scholar
  3. Amadi, A; Dickson, A. A.; Maate, G. O., (1993). Remediation of oil polluted soils: Effect of organic and inorganic nutrient supplements on the performance of Maize. J. Water Air, Soil Pollut. 66 (1-2), 59–76 (8 pages). CrossRefGoogle Scholar
  4. Amadi, A.; Bari, Y. U., (1992). Use of poultry manure for the amendment of oil polluted soils in relation to growth of maize. Environ. Int., 18, 521–527 (7 pages). CrossRefGoogle Scholar
  5. Atuanya, E. J., (1987). Effect of oil pollution on physical and chemical properties of soil: A case study of waste oil contaminated delta soil in Bendel State, Nigeria. J. Appl. Sci., 55, 155–176 (22 pages). Google Scholar
  6. Bellamy, P., (2007). Dictionary of environment. Academic Publishers, New Delhi, India.Google Scholar
  7. Brady, N. C.; Weil, R. R., (1999). The nature and properties of soil. 12th. Ed. Prentice-Hall, Inc. New Jersey 07458.Google Scholar
  8. Bremner, J. M., (1996). Nitrogen total. Sparks, D. L., (Ed.). Methods of soils analysis, part 3, chemical method. 2nd. Ed, SSSA Book Series No. 5, SSSA, Madison, W.I., 1085–1121.Google Scholar
  9. Buysse, W.; Stern, R.; Coe, R.; McDermott, B.; Muchiri, S.; Okello, M.; Kurji, P.; Obudho, E.; Mong’are, P., (2005). GenStat 8th. Ed. for everyday use. ICRAF Nairobi, Kenya. 114.Google Scholar
  10. Eshett, E. T.; Omueti, A. I.; Juo, A. S. R., (1990). Physico-chemical, morphology and clay mineralogical properties of soils overlying basement complex rocks in Ogoja, northern cross river State of Nigeria. Soil Sci. Plant Nutr., 36 (2), 203–214 (12 pages). CrossRefGoogle Scholar
  11. FDALR, (1985). The reconnaissance soil survey of Imo state, Nigeria, Federal Department of Agricultural Land Resources (1:250,000), Soil report, 133.Google Scholar
  12. Gee, G. W.; Or, D., (2002). Particle size distribution. in: Dane, J. H.; Topp, G. C. (Eds). Methods of soil analysis, part 4. Physical methods. Soil Sci. Soc. Am Book Series No.5, ASA and SSSA, malison, WI., 255–293.Google Scholar
  13. Grossman, R. B.; Reinsch, T. G., (2002). Bulk density and linear extensibility. in: Dane, J. H.; Topp, G. C. (Eds.). Methods of the soil analysis part 4. Physical methods. Soil Sci. Soc. Am. Book Series No.5, ASA and SSSA, Madison, WI.., 201–228.Google Scholar
  14. Hendershort, W. H., Lalande, H.; Duquette, M., (1993). Soil reaction and exchangeable acidity. in: Carter M. R. (Ed.). Soil Sampling and methods of soil analysis, Canadian Soc. Soil Sci., Lewis Publishers, London, 141–145 (5 pages). Google Scholar
  15. Isirimah, N. O.; Zuofa, K.; Loganathan, P., (1989). Effect of crude oil on maize performance and soil chemical properties in humid forest zone of nigeria. Discov. Innovat., 1 (3), 23–34 (12 pages). Google Scholar
  16. Jungerius, P. D.; Levellt, T. W., (1964). Clay mineralogy of soils over sedimentary rocks in Eastern Nigeria. Soil Sci., 97 (2), 89–95 (7 pages). CrossRefGoogle Scholar
  17. Kabata-Pendias, A.; Pendias, H., (1992). Trace elements in soils and plants. 2nd. Ed., CRC Press, Boca Raton, Fla. Kiekens, L., (1986). Calculated Langmuir parameters for Zn adsorption by soils. Academiae Analecta.Google Scholar
  18. Ladousse, A.; Tramier, B., (1991).Results of 12 years of research in spilled oil bioremediation, Inipol EAP22, Proceeding 1991 Oil Spill Conference, American petroleum Institute, Washington, DC.Google Scholar
  19. Landon, J. R., (1991). Booker tropical manual: A handbook for soil surveyand agricultural land evaluation in the tropic and subtropics: Longman Inc., New York.Google Scholar
  20. Leschber, R.; Davis, R. D.; L’Hermite, P., (1985). Chemical methods for assessing bioavailable metals in sludges and soils. Elsevier, Amsterdam.Google Scholar
  21. Lorenz, S. E.; Hamon, R. E.; Holm, P. E.; Domingues, H. C.; Sequeiria, E. M.; Christensen, T. H.; McGrath, S. P., (2000). Cadmium and zinc speciation in heavy metal contaminated soils from six European countries. Bioresour. Tech. 71 (3), 254–259 (6 pages). Google Scholar
  22. Mclean, E. V., (1982). Aluminum,. in: Page, A. L., Miller, R. H.; Keeney, D. R. (Eds.). Methods of soil analysis, part 2, Am. Soc. Agron. Madison, WI. 978-998.Google Scholar
  23. Nabulo, G.; Oryem Origa, H.; Nasinyama, G. W.; Cole, D., (2008). Assessment of Zn, Cu, Pb and Ni contamination in wetland soils and plants in the lake basin. Int. J. Environ. Sci. Tech., 5 (1), 65–74 (10 pages)CrossRefGoogle Scholar
  24. Nelson, D. W.; Sommers, L. E., (1982). Total carbon, organic carbon and organic matter. in: Page, A. L.; Miller, R. H.; Keeney, D. R. (Eds.). Methods of soil analysis, part 2, Am. Soc. Agron., Madison WI, 539–579.Google Scholar
  25. NMHPPE, (1991). Environmental quality standards for soil and water. Netherlands Ministry of Housing, Physical Planning and Environment. Leidschendam, Netherlands.Google Scholar
  26. Nwilo, P. C.; Badejo, O. T., (2001). Impacts of oil spills along the Nigeria Coast. www.aehsmag.com/issues/2001/october/impacts.html.
  27. Obi, M. E., (1990). Soil physics. A compendium of lectures. Department of Soil Science, U.N.N. 103.Google Scholar
  28. Ogaji, S. O. T; Ayotamuno, M. J; Kogbara, R. B.; Probert, S. D., (2005). Bioremediation of a crude oil polluted agricultural soil at Port-Harcourt, Nigeria. School of Engineeeering, Cranfield University, Bedfordshire, UK.Google Scholar
  29. Ogundiran, O. O.; Afolabi, T. A., (2008). Assessment of the physicochemical parameters and heavy metals toxicity of leachates from municipal solid waste open dumpsite. Int. J. Environ. Sci. Tech., 5 (2), 243–250 (8 pages)CrossRefGoogle Scholar
  30. Okafor, E. C.; Opuene, K., (2007). Preliminary assessment of trace metals and polycyclic aromatic hydrocarbons in the sediments. Int. J. Environ. Sci. Tech., 4 (2), 233–240 (8 pages)Google Scholar
  31. Okpokwasili, G. C.; Odokuma, L. O., (1990). Effect of salinity on biodegradation of oil spills dispersants. Waste Manage. 10 (2), 141–146 (6 pages). CrossRefGoogle Scholar
  32. Olson, S. R.; Sommers, L. E., (1990). Phosphorus. in: Page, A. L. (Ed.). Methods of Soil Analysis. Parts 2, Agron., Monogr. No. 9 Madison, WI. 403-431.Google Scholar
  33. Onweremadu, E. U., (2007). Pedology of near gully sites and its implications on the erodibility of soils in central South-Eastern Nigeria. Res. J. Environ. Sci., 1 (2), 71–76 (6 pages). CrossRefGoogle Scholar
  34. Onweremadu, E. U., (2008). Physico-chemical charaterisation of a farmland affected by wastewater in relation to heavy metals. J. Zhejiang U. Sci. A., 9 (3), 366–372 (7 pages). CrossRefGoogle Scholar
  35. Onweremadu, E. U.; Duruigbo, C. I., (2007). Assessment of cadmium concentration of crude oil polluted arable soils. Int. J. Environ. Sci. Tech., 4 (3), 409–412 (4 pages). Google Scholar
  36. Orajaka, S. O., (1975). Geology. In: Nigeria in maps: Eastern States. in: Ofomata, G. E. K. (Ed.). Ethiope Publishers. Benin city Nigeria, 5–7 (3 pages). Google Scholar
  37. Rowell, M. J., (1977). The Effect of crude oil spills on soils: A review of literature. in: Toogood, J. A. (Ed.), The reclamation of agricultural soils after oil spills, part 1, Edmonton, Canada. 1-33.Google Scholar
  38. Schwendinger, R. B., (1968). Reclamation of soil contaminated with oil. J. Inst. Petrol., 54, 535–543 (9 pages). Google Scholar
  39. Shuman, L. M., (1975). The effect of soil properties on zinc adsorption by soils. Soil Sci. Soc. Am. J., 39, 454–458 (5 pages). CrossRefGoogle Scholar
  40. Singer, M. J.; Munns, D. N., (1999). Soils, an introduction. 4th. Ed. Prentice-Hall, Inc. New Jersey.Google Scholar
  41. Smolders, E.; Buekers, J.; Oliver, I.; McLaughlin, M. J., (2004). Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils. Environ. Toxic. Chem., 23 (11), 2633–2640 (8 pages). CrossRefGoogle Scholar
  42. Suthar, S.; Singh, S., (2008). Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and Perionyx sansibaricus). Int. J. Environ. Sci. Tech., 5 (1), 99–106 (8 pages). CrossRefGoogle Scholar
  43. Tiller, K. G.; Hodgson, J. F., (1962). The specific sorption of cobalt and zinc by layer silicates. Clay. Clay Miner., 9, 393–403 (11 pages). CrossRefGoogle Scholar
  44. Udo, E. J.; Fayemi, A. A. A., (1975). The effect of oil pollution of soil on germination, growth and nutrient uptake of corn. J. Environ. Qual., 4, 537–540 (4 pages). CrossRefGoogle Scholar
  45. Unamba-Oparah, I., (1982). Comparison of the carbon and nitrogen contents and their relationships to other soil properties in some important soils of Southeastern Nigeria. Beitrage trop. Landwirtsch. Veterinarmed, 20, H.2, 167–176 (10 pages). Google Scholar
  46. Unamba-Oparah, I.; Wilson, M. J.; Smith, B. F. L., (1987). Exchangeable cations and mineralogy of some selected Nigerian soils. Appl. Clay Sci., 2, 105–128 (24 pages). CrossRefGoogle Scholar
  47. Unger, P. W.; Kaspar, T. C., (1994). Soil compaction and root growth. Rev. Agron. J., 86, 759–766 (8 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2010

Authors and Affiliations

  • M. C. Chukwuma
    • 1
  • E. T. Eshett
    • 1
  • E. U. Onweremadu
    • 1
  • M. A. Okon
    • 1
  1. 1.Soil Science and Technology DepartmentFederal University of TechnologyOwerriNigeria

Personalised recommendations