Skip to main content
Log in

Optimization of operational parameters for ethanol production from Korean food waste leachate

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Recently, research on the production of ethanol from waste has been accelerating for both ecological and economical reasons, primarily for its use as an alternative to petroleum based fuels. In this study, response surface methodology based 23 -full factorial central composite design was employed to optimize the parameters of ethanol production from Korean food waste leachate. The reducing sugar concentration of the food waste leachate determined by the dinitrosalicylic acid method was 75 g/L. A second order polynomial model was developed to evaluate the quantitative effects of temperature, pH and reducing sugar concentration in order to find an optimum condition for the ethanol production from food waste leachate. From the experimental result, maximum ethanol concentration of 24.17 g/L was obtained at the optimum condition of temperature (38 °C), pH (5.45) and reducing sugar concentration (75 g/L). The experimental value (24.17 g/L) agreed very well with the predicted one (23.66 g/L), indicating the suitability of the model employed and the success of response surface methodology in optimizing the conditions of ethanol production from food waste leachate. Canonical analysis indicated that the stationary point was a saddle point for the ethanol yield. Despite being a waste, an ethanol yield of 0.32 g ethanol/g reducing sugar demonstrated the potential of food waste leachate as a promising biomass resource for the production of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA, (1998). Standard Methods for Examination of Water and Wastewater, 20th Ed., American Public Health Association, Washington, D.C.

    Google Scholar 

  • Castillo, F. J.; Izaguirre, M. E.; Michelena, V.; Moreno, B., (1982). Optimization of fermentation conditions for ethanol production from whey. Biotech. Lett., 4 (9), 567–572 (6 pages).

    Article  CAS  Google Scholar 

  • Cazetta, M. L.; Celligoi, M. A. P. C; Buzato, J. B.; Scarmino, I. S., (2007). Fermentation of molasses by Zymomonas mobilis: Effects of temperature and sugar concentration on ethanol production. Bioresour. Tech., 98 (15), 2824–2828 (5 pages).

    Article  CAS  Google Scholar 

  • Chauhan, B.; Gupta, R., (2004). Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Proc. Biochem., 39 (12), 2115–2122 (8 pages).

    Article  CAS  Google Scholar 

  • Douglas, C. M., (2001). Design and analysis of experiments. 5th. Ed. John Wiley and Sons, Arizona, USA.

    Google Scholar 

  • Ebrahimi, F.; Khanahmadi, M.; Roodpeyma, S.; Taherzadeh, M. J., (2007). Ethanol production from bread residues. Biomass Bioenerg., 32 (4), 333–337 (5 pages).

    Article  Google Scholar 

  • Gaspar, M.; Kaiman, G; Reczey, K., (2007). Corn fiber as a raw material for hemicellulose and ethanol production. Proc. Biochem., 42 (7), 1135–1139 (5 pages).

    Article  CAS  Google Scholar 

  • Iranmahboob, J.; Nadim, F.; Monemi, S., (2001). Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenerg., 22 (5), 401–404 (5 pages).

    Article  Google Scholar 

  • Jo, M. S.; Rene, E. R.; Kim, S. H.; Park, H. S., (2008). An analysis of synergistic and antagonistic behavior during BTEX removal in batch system using response surface methodology. J. Hazard. Mater., 152 (3), 1276–1284 (9 pages).

    Article  CAS  Google Scholar 

  • Kádár, Z.; Szengyel, Z.; Reczey, K., (2004). Simultaneous saccharification and fermentation (SSF) of industrial wastes for the production of ethanol. Ind. Crop Prod., 20 (1), 103–110 (8 pages).

    Article  Google Scholar 

  • Kim, J. K.; Han, G. H.; Oh, B. R.; Chun, Y. N.; Eom, C. Y.; Kim, S. W., (2008). Volumetric scale-up of a three stage fermentation system for food waste treatment. Bioresour. Tech., 99 (10), 4394–4399 (6 pages).

    Article  CAS  Google Scholar 

  • King, F. G; Hossain, M. A., (1982). The effect of temperature, pH, and initial glucose concentration on the kinetics of ethanol production by Zymomonas mobilis in batch fermentation. Biotech. Lett. 4 (8), 531–536 (6 pages).

    Article  CAS  Google Scholar 

  • Le Man, H.; Kim, J. W.; Park, H. S., (2008). Optimization of ethanol production from Korean food waste leachate using response surface methodology. In Korea Society of Waste Management conference, Sunchon University, Sunchon, Republic of Korea 8–10 May.

    Google Scholar 

  • Lee, D. H.; Behera, S. K.; Won, J. W.; Park, H. S., (2009). Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Waste Manage., 29 (2), 876–882 (7 pages).

    Article  CAS  Google Scholar 

  • McMeckin, T. A.; Olley, J.; Ratkwsky, D. A; Ross, T., (2002). Predictive microbiology: towards the interface and beyond. Int. J. Food Microbiol., 73 (2–3), 395–407 (12 pages).

    Article  Google Scholar 

  • McMillan, J. D. (1997). Bioethanol production: Status and prospects. Renew Energ., 10 (2), 295–302 (8 pages).

    Article  CAS  Google Scholar 

  • Miller, G. L., (1959). Use of DNS reagent for determination of reducing sugars. Anal. Chem., 31, 426–428 (3 pages).

    Article  CAS  Google Scholar 

  • Muralidhar, R.; Gummadi, S. N.; Dasu, V. V.; Panda, T., (2003). Statistical analysis on some critical parameters affecting the formation of protoplasts from the mycelium of Penicillium griseofulvum. Biochem. Eng. J., 16 (3), 229–235 (7 pages).

    Article  CAS  Google Scholar 

  • Nahvi, I.; Emtiaxi, G.; Alkabi, L., (2002). Isolation of a flocculating Saccharomyces cerevisiae and investigation of its performance in the fermentation of beet molasses to ethanol. Biomass Bioenerg., 23 (6), 481–486 (6 pages).

    Article  CAS  Google Scholar 

  • Nigam, J. N., (2000). Continuous ethanol production from pineapple cannery waste using immobilized yeast cells. J. Biotech., 80 (2), 189–193 (5 pages).

    Article  CAS  Google Scholar 

  • Ozmihci, S.; Kargi, F., (2007). Effects of feed sugar concentration on continuous ethanol fermentation of cheese whey powder solution (CWP). Enzyme Microb. Tech., 41 (6–7), 876–880 (5 pages).

    Article  CAS  Google Scholar 

  • Pena, A.; Cinco, G.; Gomez-Puyou, A.; Tuena, M., (1972). Effect of the pH of the incubation medium on glycolysis and respiration in Saccharomyces cerevisiae. Arch. Biochem. Biophys., 153 (2), 413–425 (13 pages).

    Article  CAS  Google Scholar 

  • Phisalaphong, M.; Srirattana, N.; Tanthapanichakoon, W., (2005). Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation. Biochem. Eng. J., 28 (1), 36–43 (8 pages).

    Article  Google Scholar 

  • Ratnam, B. V. V.; Rao, M. N.; Rao, M. D.; Rao, S. S.; Ayyanna, C., (2003). Optimization of fermentation conditions for the production of ethanol from sago starch using response methodology. World J. Microb. Biot, 19 (5), 523–526 (4 pages).

    Article  CAS  Google Scholar 

  • Ravikumar, K.; Pakshirajan, K.; Swaminathan, T.; Balu, K., (2005). Optimization of batch process parameters using response surface methodology for dye removal by a novel adsorbent. Chem. Eng. J., 105 (3), 131–138 (8 pages).

    Article  CAS  Google Scholar 

  • Rene, E. R.; Jo, M. S.; Kim, S. H.; Park, H. S., (2007). Statistical analysis of main and interaction effects during the removal of BTEX mixtures in batch conditions, using wastewater treatment plant sludge microbes. Int. J. Environ. Sci. Tech., 4 (2), 177–182 (6 pages).

    CAS  Google Scholar 

  • Rivera, E. C.; Costa, A. C.; Atala, D. I. P.; Maugeri, F.; Maciel, M. R. W.; Filho, R. M., (2006). Evaluation of optimization techniques for parameter estimation: Application to ethanol fermentation considering the effect of temperature. Proc Biochem., 41 (7), 1682–1687 (6 pages).

    Article  CAS  Google Scholar 

  • Tang, Y. Q.; Koikem, Y.; Liu, K.; An, M. Z.; Morimura, S.; Wu, X. L.; Kida, K., (2008). Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioenerg., 32 (11), 1037–1045 (9 pages).

    Article  CAS  Google Scholar 

  • Teixeira, L. C.; Linden, J. C.; Schroeder, H. A., (1999). Optimizing peracetic acid pretreatment conditions for improved simultaneous saccharification and co-fermentation (SSCF) of sugar cane bagasse to ethanol fuel. Renew. Energ., 16 (1–4), 1070–1073 (4 pages).

    Article  CAS  Google Scholar 

  • Wang, Q.; Ma, H.; Xu, W.; Gong, L.; Zhang, W.; Zou, D., (2008). Ethanol production from kitchen garbage using response surface methodology. Biochem. Eng. J., 39 (3), 604–610 (7 pages).

    Article  CAS  Google Scholar 

  • Wilkins, M. R.; Widmer, W. W.; Grohmann, K., (2007). Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Proc. Biochem., 42 (12), 1614–1619 (6 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Park Ph.D. P.E..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Man, H., Behera, S.K. & Park, H.S. Optimization of operational parameters for ethanol production from Korean food waste leachate. Int. J. Environ. Sci. Technol. 7, 157–164 (2010). https://doi.org/10.1007/BF03326127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326127

Keywords

Navigation