Effect of leachate loading rate and incubation period on the treatment efficiency by T. versicolor immobilized on foam cubes

  • J. Saetang
  • S. Babel


This study focuses on treatment of landfill leachate in column experiments by immobilized Trametes versicolor on polyurethane foam, collected from Nonthaburi landfill site, Thailand. In this study, glucose was used as a co-substrate. The effect of biomass growth on color removal was observed by immobilizing fungi on polyurethane foam. The same immobilized fungi were used for four cycles of 5 days each to find the reuse of fungi. Leachate was diluted to see the effect of organic loading on color removal. At optimum pH of 4 and in 20 days with 3 g/L of glucose, the fungi could decolorize 78 % and 63 % for 5-times dilution and concentrated leachate, respectively, using immobilized fungi after 4 days initial growth. Fungi could also reduce biological oxygen demand and chemical oxygen demand of 52 % and 42 % (with initial biological oxygen demand and chemical oxygen demand of 48,900 and 96,512 mg/L), respectively, with glucose 3 g/L in concentrate leachate and with 4 days initial immobilization of fungi on polyurethane foam. About 1–6% higher color removal was observed on day 20 with 15 days fungi immobilization initially as compared to 4 days immobilization. Higher removal efficiency was observed for the same leachate after dilution due to reduction in organic loading. Addition of co-substrate enhances significantly removal of color, biological oxygen demand and chemical oxygen demand. Chemical oxygen demand removal reached to 0.6 mg/mg of biomass with the co-substrate. Therefore, white rot fungi can be considered as potentially useful microorganisms in landfill leachate treatment.


Biodegradation Decolorization Landfill leachate Organic loading White rot fungi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amaral, P. F. F.; Fernandes, D. L. A.; Tavares, A. P. M.; Xavier, A. B. M. R.; Cammarota, M. C.; Coutinho, J. A. P.; Coelho, M. A. Z., (2004). Decolorization of dyes from textilewastewater by Trametes versicolor. Environ. Tech., 25 (11), 1313–1320 (8 pages). CrossRefGoogle Scholar
  2. Benito, G. G.; Miranda, M. P.; Santos, D. R. l., (1997). Decolorization of wastewater from an alcoholic fermentation process with Trametes versicolor. Bioresour. Tech., 61 (1), 33–37 (5 pages). CrossRefGoogle Scholar
  3. Boominathan, K.; Reddy, C. A., (1992). Fungal degradation of lignin: Biotechnological applications. In: Arora D. K.; Elander R. P.; Mukherji K. G. (Eds.), Handbook of applied mycology. Dekker, M., New York, 763–782.Google Scholar
  4. Cerniglia, C. E., (1997). Fungal metabolism of polycyclic aromatic hydrocarbons, past, present and future applications in bioremediation. J. Ind. Microbiol. Biot., 19 (5-6), 324–333 (10 pages). CrossRefGoogle Scholar
  5. Chiemchaisri, C.; Srisukphun T., (2003). Performance of soil and compost mixture in leachate purification at intermediate cover layer of tropical landfill. In: IWA Conference on Environmental Biotechnology, Advancement on water and wastewater applications in the tropics. December 9-10, Kuala Lumpur, Malaysia.Google Scholar
  6. Daniel, G.; Volc, J.; Kubatova, E., (1994). Pyranose oxidase, a major source of H2O2 during wood degradation by Phanerochaete chrysosporium, Trametes versicolor and Oudemansiella mucida. Appl. Environ. Microbiol., 60 (7), 2524–2532 (9 pages). Google Scholar
  7. Erkurt, E. A.; Ünyayar, A.; Kumbur, H., (2007). Decolorization of synthetic dyes by white rot fungi, involving laccase enzyme in the process. Process Biochem., 42 (10), 1429–1435 (7 pages). CrossRefGoogle Scholar
  8. Fu, Y.; Viraraghavan, T., (2001). Fungal decolorization of Dye wastewaters: A review. Bioresource Technol., 79 (3), 251–262 (12 pages). CrossRefGoogle Scholar
  9. Kandelbauer, A.; Guebitz, G. M., (2005). Bioremediation for the decolorization of textile Dyes — A review. Enviro. Chem., 269-288 (20 pages). Google Scholar
  10. Kim, S. J.; Shoda, M., (1999). Batch decolorization of molasses by suspended and immobilized fungus of geotrichum Candidum. J. Biosci. Bioeng., 88 (5), 586–589 (4 pages). CrossRefGoogle Scholar
  11. Kirk, T. K.; Connors, W. J.; Zeikus, J. C., (1976). Requirement for a growth substrate during lignin decomposition by two wood-rotting fungi. Appl. Environ. Icrobiol., 32(1), 192–194 (3 pages). Google Scholar
  12. Kirk, T. K.; Farrell, R. L., (1987). Enzymatic “combustion” and the microbial degradation of lignin. Annu. Rev Microbiol., 41, 465–505 (41 pages). CrossRefGoogle Scholar
  13. Knapp, J. S.; Newby, P. S.; Reece, L. P., (1999). Decolorization of dyes by wood-rotting basidiomycete fungi. Enzyme Microb. Technol., 17 (7), 664–668 (5 pages). CrossRefGoogle Scholar
  14. Knapp, J. S.; Zhang, F. M.; Tapley, K. N., (1997). decolourisation of orange II by wood-rotting fungus. J. Chem. Technol. Biot., 69 (3), 289–296 (8 pages). CrossRefGoogle Scholar
  15. Lapadatescu, C.; Feron, G.; Vergoignan, C.; Djian, A.; Durand, A.; Bonnarme, P., (1997). Influence of cell immobilization on the production of Benzaldehyde and Benzyl Alcohol by the white-rot fungi bjerkandera adusta, ischnoderma benzoinum and dichomitus squalens. Appl. Microbiol. Biot., 47 (6), 708–714 (7 pages). CrossRefGoogle Scholar
  16. Machida, Y.; Nakanashi, T., (1984). purification and properties of pyranose oxidase from Coriolus versicolor. Agric Biol Chem., 48 (10), 2463–2470 (8 pages). CrossRefGoogle Scholar
  17. Martin, C.; Manzanares, A., (1994). A study of decolorization of straw soda pulping effluent by Tramestes versicolor. Bioresource Technol., 47 (3), 209–214 (6 pages). CrossRefGoogle Scholar
  18. Mehna, A., Bajpai, P.; Bajpai, P. K., (1995). Studies on decolorization of effluent from a small pulp mill utilizing agri-residues with Trametes versicolor. Enzyme Microb. Technol., 17 (1), 18–22 (5 pages). CrossRefGoogle Scholar
  19. Nakamura, Y; Mtui, G. S.; Tatsuro, S.; Masaaki, K., (1999). Lignin-degrading enzyme production by Bjerkandera adusta immobilized on polyurethane foam. J. Biosci. Bioeng., 88 (1), 41–47 (7 pages). CrossRefGoogle Scholar
  20. Nilsson, I.; Moller, A.; Mattiasson, B.; Trubindamayugi, M. S. T.; Welander, U., (2006). Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzyme Microb. Tech., 38(1–2), 94–100 (7 pages). CrossRefGoogle Scholar
  21. Paszczynski, A.; Crawford, R. L., (1995). Potential for bioremediation of xenobiotic compounds by the white rot fungus Phanerochaete chrysosporium. Biotech. Progr., 11 (4), 368–379 (12 pages). CrossRefGoogle Scholar
  22. Pointing, S. B., (2001). Feasibility of bioremediation by white rot fungi. Appl. Microbiol. Biotech., 57 (7), 20–33 (14 pages). Google Scholar
  23. PCD, (2005). Pollution Control Department, State of Thailand’s Pollution,
  24. Reddy, A., (1995). The potential for white-rot fungi in the treatment of pollutants. Curr. Opin. Biotech., 6 (3), 320–328 (9 pages). CrossRefGoogle Scholar
  25. Sathiya Moorthi, P.; Periyar Selvam, S.; Sasikalaveni, A.; Murugesan, K.; Kalaichelvan, P. T., (2007). Decolorization of textile dyes and their effluents using white rot fungi. Af. J. Biotech., 6 (4), 424–429 (6 pages). Google Scholar
  26. Selvam, K.; Swaminathan, K.; Myung, H. S.; Keon-Sang, Ch., (2002). Biological treatment of a pulp and paper industry effluent by Fomes lividus and Trametes versicolor. World J. Microbiol. Biotech., 18 (6), 523–526 (4 pages). CrossRefGoogle Scholar
  27. Shah, V.; Nerud, F., (2002). Lignin degrading system of white- rot fungi and its exploitation for dye decolorization. Can. J. Microbiol., 48 (10), 857–870 (14 pages). CrossRefGoogle Scholar
  28. SMEW, (1998). Standard Methods for the Examination of Water, 20th. Ed. APHA, AWWA and WEF, Washington, DC.Google Scholar
  29. Swamy, J.; Ramsay, J. A., (1999). Effect of Mn2+ and ammonium concentration on laccase and manganese peroxidase production and amaranth decoloration by trametes versicolor. Appl. Microbiol. Biotech., 51 (3), 391–396 (6 pages). CrossRefGoogle Scholar
  30. Wu, J.; Xiao, Ya-Zhong,; Yu, Han-Qing, (2005). Degradation of lignin in pulp mill wastewaters by white rot fungi on biofilm. Bioresour. Tech., 96 (12), 1357–1363 (7 pages). CrossRefGoogle Scholar
  31. USEPA, (2007). Summary of the EPA municipal solid waste program.U.S. Environmental Protection Agency.

Copyright information

© Islamic Azad University 2009

Authors and Affiliations

  1. 1.Sirindhorn International Institute of TechnologyThammasat UniversityPathumthaniThailand

Personalised recommendations