Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment



When a new wastewater treatment plant is being designed by computer simulation, detailed data about organic fractions of influent wastewater (measured as chemical oxygen demand) are usually not available, but knowledge of the typical ranges of these fractions is indispensable. The influent chemical oxygen demand fractions can substantially influence the results of simulation-based design such as reactor volumes, solids residence time, effluent quality, oxygen demand, sludge production, etc. This article attempts to give an overview of wastewater organic fractions as modeling parameters and presents new chemical oxygen demand fractionation results from Hungary. According to the data from literature, the ratio of chemical oxygen demand components in raw wastewater is very different and the average composition is as follows: Inert particulate =17.1 %, slowly biodegradable = 57.9 %, inert soluble = 7.8 % and readily biodegradable = 17.5 %. The Hungarian wastewater samples were analyzed according to STOWA (Dutch foundation for applied water research) protocol and the obtained results were not much different from those of literature ( inert particulate = 23.7 %, slowly biodegradable = 49.8 %, inert soluble = 4.6 % and readily biodegradable = 21.9 %), but some typical characteristics were observed.


Simulation activated sludge models sewage characterization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brdjanovic, D.; Van Loosdrecht, M. C. M.; Versteeg, P.; Hooijmans, C. M; Alaerts, G. J.; Heijnen, J. J., (2000). Modeling COD, N and P removal in a full-scale WWTP Haarlem Waarderpolder., Water Res., 34(3), 846–858.CrossRefGoogle Scholar
  2. Carucci, A.; Rolle, E.; Smurra, P., (1999). Management optimization of a large wastewater treatment plant., Water Sci. Tech. 39(4), 129–136.CrossRefGoogle Scholar
  3. Chachaut, B; Roche, N.; Latifi, R., (2005). Long-term aeration strategies for small-size alternating activated sludge treatment plants., Chem. Eng. Prog., 44(5), 591–604.CrossRefGoogle Scholar
  4. Del la Sota, A.; Larrea, L.; Novak, L.; Grau, P.; Henze, M., (1994). Performance and model calibration of R-D-N processes in pilot plant, Water Sci. Tech. 30(6), 355–364.Google Scholar
  5. Ekama, G A.; Dold, P. L.; Marais, G V. R., (1986). Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems., Water Sci. Tech., 18(6), 91–114.Google Scholar
  6. Enviro Sim Assiocates Ltd., (2005). BioWin 2.1. simulator — default parameters.Google Scholar
  7. Funamizu, N.; Yamamoto, S.; Kitagawa, Y.; Takakuwa, T., (1997). Simulation of the operational conditions of the full-scale municipal wastewater treatment plant to improve the performance of nutrient removal., Water Sci. Tech. 36(12), 9–18.CrossRefGoogle Scholar
  8. Gernaey, K. Y; Jorgensen, S. B., (2004). Benchmarking combined biological phosphorous and nitrogen removal wastewater treatment plant processes., Cont. Eng. Pract. 12(3), 357–373.CrossRefGoogle Scholar
  9. Henze, M., (1992). Characterization of wastewater for modelling of activated sludge processes., Water Sci. Tech., 25(6), 1–5.Google Scholar
  10. Henze, M.; Grady, C. P. L.; Gujer, W.; Marais, G V. R.; Matsuo, T., (1987). Activated sludge model No. 1. IAWPRC Scientific and Technical Report 3. London: IAWPRC.Google Scholar
  11. Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wentzel, M. C; Marais, G. V. R., (1995). Activated sludge model No. 2. IAWQ Scientific and Technical Report No. 3., London: IAWQ.Google Scholar
  12. Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wentzel, M. C; Marais, G V. R.; van Loosdrecht, M. C. M., (1999). Activated sludge model No. 2d., Water Sci. Tech. 39(1) 165–182.CrossRefGoogle Scholar
  13. Henze, M., Gujer, W., Mino, T., van Loosdrecht, M., (2000). Activated sludge model No. 3. Activated sludge models ASM1, ASM2, ASM2D and ASM3, in: Henze M.; Gujer, W.; Mino, T.; Van Loosdrecht, M., (Eds.). IWA Scientific and Technical Report No. 9. London: IWA.Google Scholar
  14. Hydromantis Ltd., (2007). GPS-X 5.0 software. General Purpose Simulator — default parameters.Google Scholar
  15. Kappeler, J.; Gujer W., (1992). Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling., Water Sci. Tech. 25(6), 125–139.Google Scholar
  16. Lesouef, A.; Payraudeau M.; Rogalla, F.; Kleiber, B., (1992). Optimizing nitrogen removal reactor configuration by onsite calibration of the IAWQ activated sludge model., Water Sci. Tech., 25(6), 105–123.Google Scholar
  17. Lie, E.; Welander, T., (1997). A method for determination of the readily fermentable organic fraction in municipal wastewater., Water Res., 31(6), 1269–1274.CrossRefGoogle Scholar
  18. Makinia, J.; Rosenwinkel, K. H.; Spering, V., (2005). Long-term simulation of the activated sludge process at the Hanover-Grümmerward pilot WWTP, Water Res., 39(8), 1489–1502.CrossRefGoogle Scholar
  19. Mamais, D.; Jenkins, D.; Pitt, P., (1993). A rapid physico-cemical method for the determination of readily biodegradable soluble COD in municipal wastewater, Water Res., 27(1), 195–197.CrossRefGoogle Scholar
  20. Marquot, A; Strieker, A. E.; Racault, Y., (2006). ASM1 dynamic calibration and long term-validation for an intermittently aerated WWTP, Water Sci. Tech. 53(12), 247–256.CrossRefGoogle Scholar
  21. Melcer, H.; Dold, P. L.; Jones, R. M.; Bye, C. M.; Takacs, I.; Stensel, H. D.; Wilson, A. W.; Sun, P.; Bury, S., (2003). Methods for wastewater characterisation in activated sludge modelling. Water Environment Research Foundation (WERF), Alexandria, VA, USA.Google Scholar
  22. Rieger, L.; Koch, G; Khiini, M.; Gujer, W.; Siegrist, H., (2001). The EAWAG BIO-P module for activated sludge model No. 3., Water Res., 35(16), 3887–3903.CrossRefGoogle Scholar
  23. Roeleveld, P. J.; Van Loosdrecht, M. C. M., (2002). Experience with guidelines for wastewater characterisation in The Netherlands., Water Sci. Tech., 45(6), 77–87.Google Scholar
  24. Satoh, H.; Okuda, E.; Mino, T.; Matsuo, T., (2000). Calibration of kinetic parameters in the IAWQ activated sludge model: a pilot scale experience., Water Sci. Tech., 42(3–4), 29–34.Google Scholar
  25. Sin, G; Van Hulle, S. W. H.; Dirk, J. W.; Pauw, D.; Van Griensven, A.; Vanrollleghem, P. A., (2005). A critical comparison of systematic calibration protocols for activated sludge models: A SWOT analysis., Water Res., 39(12) 2459–2474.CrossRefGoogle Scholar
  26. Sollfrank, U., (1988). Bedeutung organischer Fraktionen in kommunalem Abwasser im Himblick auf die mathematische modellierung von belebtschlammsystemen. Dissertation der ETH, Zürich, Schweiz, No. 8765.Google Scholar
  27. Spanjers, H.; Vanrolleghem, P, (1995). Respirometry as tool for rapid characterization of wastewater and activated sludge., Water Sci. Tech., 31(2), 105–114.CrossRefGoogle Scholar
  28. Vanrolleghem, P. A.; Insel, G; Petersen, B.; Sin, G; De Pauw, D.; Nopens, I.; Weijers, S.; Gearnaey, K., (2003). A comprehensive model calibration procedure for activated sludge models. In Proceedings: WEFTEC 76th. Annual Conference and Exhibition, Los Angeles, CA, USA.Google Scholar
  29. Vanveldhuizen, H. M.; Van Loosdrecht, M. C. M.; Heijnen, J. J., (1999). Modelling Biological Phosphorous and nitrogen removal in a full scale activated sludge process., Water Res. 33(16), 3459–3468.CrossRefGoogle Scholar
  30. Wichern, M.; Lübken, M.; Blömer, R.; Rosenwinkel, K. H., (2003). Efficiency of the activated sludge model No. 3 for German wastewater on six different WWTPs.,, 47(11), 211–218.Google Scholar
  31. Wichern, M.; Obenaus, F.; Wulf, P.; Rosenwinkel, K. H., (2001). Modelling of full-scale wastewater treatment plants with different treatment processes using the activated sludge model No. 3., Water Sci. Tech., 44(1), 49–56.Google Scholar
  32. Xu, S.; Hultman, B., (1996). Experiences in wastewater characterization and model calibration for the activated sludge process., Water Sci. Tech., 33(12), 89–98.CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2009

Authors and Affiliations

  1. 1.Department of Environmental Engineering and Chemical TechnologyUniversity of PannoniaVeszpremHungary

Personalised recommendations