Skip to main content
Log in

Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

When a new wastewater treatment plant is being designed by computer simulation, detailed data about organic fractions of influent wastewater (measured as chemical oxygen demand) are usually not available, but knowledge of the typical ranges of these fractions is indispensable. The influent chemical oxygen demand fractions can substantially influence the results of simulation-based design such as reactor volumes, solids residence time, effluent quality, oxygen demand, sludge production, etc. This article attempts to give an overview of wastewater organic fractions as modeling parameters and presents new chemical oxygen demand fractionation results from Hungary. According to the data from literature, the ratio of chemical oxygen demand components in raw wastewater is very different and the average composition is as follows: Inert particulate =17.1 %, slowly biodegradable = 57.9 %, inert soluble = 7.8 % and readily biodegradable = 17.5 %. The Hungarian wastewater samples were analyzed according to STOWA (Dutch foundation for applied water research) protocol and the obtained results were not much different from those of literature ( inert particulate = 23.7 %, slowly biodegradable = 49.8 %, inert soluble = 4.6 % and readily biodegradable = 21.9 %), but some typical characteristics were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brdjanovic, D.; Van Loosdrecht, M. C. M.; Versteeg, P.; Hooijmans, C. M; Alaerts, G. J.; Heijnen, J. J., (2000). Modeling COD, N and P removal in a full-scale WWTP Haarlem Waarderpolder., Water Res., 34(3), 846–858.

    Article  CAS  Google Scholar 

  • Carucci, A.; Rolle, E.; Smurra, P., (1999). Management optimization of a large wastewater treatment plant., Water Sci. Tech. 39(4), 129–136.

    Article  Google Scholar 

  • Chachaut, B; Roche, N.; Latifi, R., (2005). Long-term aeration strategies for small-size alternating activated sludge treatment plants., Chem. Eng. Prog., 44(5), 591–604.

    Article  Google Scholar 

  • Del la Sota, A.; Larrea, L.; Novak, L.; Grau, P.; Henze, M., (1994). Performance and model calibration of R-D-N processes in pilot plant, Water Sci. Tech. 30(6), 355–364.

    CAS  Google Scholar 

  • Ekama, G A.; Dold, P. L.; Marais, G V. R., (1986). Procedures for determining influent COD fractions and the maximum specific growth rate of heterotrophs in activated sludge systems., Water Sci. Tech., 18(6), 91–114.

    CAS  Google Scholar 

  • Enviro Sim Assiocates Ltd., (2005). BioWin 2.1. simulator — default parameters.

  • Funamizu, N.; Yamamoto, S.; Kitagawa, Y.; Takakuwa, T., (1997). Simulation of the operational conditions of the full-scale municipal wastewater treatment plant to improve the performance of nutrient removal., Water Sci. Tech. 36(12), 9–18.

    Article  CAS  Google Scholar 

  • Gernaey, K. Y; Jorgensen, S. B., (2004). Benchmarking combined biological phosphorous and nitrogen removal wastewater treatment plant processes., Cont. Eng. Pract. 12(3), 357–373.

    Article  Google Scholar 

  • Henze, M., (1992). Characterization of wastewater for modelling of activated sludge processes., Water Sci. Tech., 25(6), 1–5.

    CAS  Google Scholar 

  • Henze, M.; Grady, C. P. L.; Gujer, W.; Marais, G V. R.; Matsuo, T., (1987). Activated sludge model No. 1. IAWPRC Scientific and Technical Report 3. London: IAWPRC.

    Google Scholar 

  • Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wentzel, M. C; Marais, G. V. R., (1995). Activated sludge model No. 2. IAWQ Scientific and Technical Report No. 3., London: IAWQ.

    Google Scholar 

  • Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wentzel, M. C; Marais, G V. R.; van Loosdrecht, M. C. M., (1999). Activated sludge model No. 2d., Water Sci. Tech. 39(1) 165–182.

    Article  CAS  Google Scholar 

  • Henze, M., Gujer, W., Mino, T., van Loosdrecht, M., (2000). Activated sludge model No. 3. Activated sludge models ASM1, ASM2, ASM2D and ASM3, in: Henze M.; Gujer, W.; Mino, T.; Van Loosdrecht, M., (Eds.). IWA Scientific and Technical Report No. 9. London: IWA.

    Google Scholar 

  • Hydromantis Ltd., (2007). GPS-X 5.0 software. General Purpose Simulator — default parameters.

  • Kappeler, J.; Gujer W., (1992). Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling., Water Sci. Tech. 25(6), 125–139.

    CAS  Google Scholar 

  • Lesouef, A.; Payraudeau M.; Rogalla, F.; Kleiber, B., (1992). Optimizing nitrogen removal reactor configuration by onsite calibration of the IAWQ activated sludge model., Water Sci. Tech., 25(6), 105–123.

    CAS  Google Scholar 

  • Lie, E.; Welander, T., (1997). A method for determination of the readily fermentable organic fraction in municipal wastewater., Water Res., 31(6), 1269–1274.

    Article  CAS  Google Scholar 

  • Makinia, J.; Rosenwinkel, K. H.; Spering, V., (2005). Long-term simulation of the activated sludge process at the Hanover-Grümmerward pilot WWTP, Water Res., 39(8), 1489–1502.

    Article  CAS  Google Scholar 

  • Mamais, D.; Jenkins, D.; Pitt, P., (1993). A rapid physico-cemical method for the determination of readily biodegradable soluble COD in municipal wastewater, Water Res., 27(1), 195–197.

    Article  CAS  Google Scholar 

  • Marquot, A; Strieker, A. E.; Racault, Y., (2006). ASM1 dynamic calibration and long term-validation for an intermittently aerated WWTP, Water Sci. Tech. 53(12), 247–256.

    Article  CAS  Google Scholar 

  • Melcer, H.; Dold, P. L.; Jones, R. M.; Bye, C. M.; Takacs, I.; Stensel, H. D.; Wilson, A. W.; Sun, P.; Bury, S., (2003). Methods for wastewater characterisation in activated sludge modelling. Water Environment Research Foundation (WERF), Alexandria, VA, USA.

  • Rieger, L.; Koch, G; Khiini, M.; Gujer, W.; Siegrist, H., (2001). The EAWAG BIO-P module for activated sludge model No. 3., Water Res., 35(16), 3887–3903.

    Article  CAS  Google Scholar 

  • Roeleveld, P. J.; Van Loosdrecht, M. C. M., (2002). Experience with guidelines for wastewater characterisation in The Netherlands., Water Sci. Tech., 45(6), 77–87.

    CAS  Google Scholar 

  • Satoh, H.; Okuda, E.; Mino, T.; Matsuo, T., (2000). Calibration of kinetic parameters in the IAWQ activated sludge model: a pilot scale experience., Water Sci. Tech., 42(3–4), 29–34.

    CAS  Google Scholar 

  • Sin, G; Van Hulle, S. W. H.; Dirk, J. W.; Pauw, D.; Van Griensven, A.; Vanrollleghem, P. A., (2005). A critical comparison of systematic calibration protocols for activated sludge models: A SWOT analysis., Water Res., 39(12) 2459–2474.

    Article  CAS  Google Scholar 

  • Sollfrank, U., (1988). Bedeutung organischer Fraktionen in kommunalem Abwasser im Himblick auf die mathematische modellierung von belebtschlammsystemen. Dissertation der ETH, Zürich, Schweiz, No. 8765.

  • Spanjers, H.; Vanrolleghem, P, (1995). Respirometry as tool for rapid characterization of wastewater and activated sludge., Water Sci. Tech., 31(2), 105–114.

    Article  CAS  Google Scholar 

  • Vanrolleghem, P. A.; Insel, G; Petersen, B.; Sin, G; De Pauw, D.; Nopens, I.; Weijers, S.; Gearnaey, K., (2003). A comprehensive model calibration procedure for activated sludge models. In Proceedings: WEFTEC 76th. Annual Conference and Exhibition, Los Angeles, CA, USA.

    Google Scholar 

  • Vanveldhuizen, H. M.; Van Loosdrecht, M. C. M.; Heijnen, J. J., (1999). Modelling Biological Phosphorous and nitrogen removal in a full scale activated sludge process., Water Res. 33(16), 3459–3468.

    Article  CAS  Google Scholar 

  • Wichern, M.; Lübken, M.; Blömer, R.; Rosenwinkel, K. H., (2003). Efficiency of the activated sludge model No. 3 for German wastewater on six different WWTPs.,, 47(11), 211–218.

  • Wichern, M.; Obenaus, F.; Wulf, P.; Rosenwinkel, K. H., (2001). Modelling of full-scale wastewater treatment plants with different treatment processes using the activated sludge model No. 3., Water Sci. Tech., 44(1), 49–56.

    CAS  Google Scholar 

  • Xu, S.; Hultman, B., (1996). Experiences in wastewater characterization and model calibration for the activated sludge process., Water Sci. Tech., 33(12), 89–98.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Pasztor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasztor, I., Thury, P. & Pulai, J. Chemical oxygen demand fractions of municipal wastewater for modeling of wastewater treatment. Int. J. Environ. Sci. Technol. 6, 51–56 (2009). https://doi.org/10.1007/BF03326059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326059

Keywords

Navigation