Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation



While transesterification is well established, there remain considerable inefficiencies in existing transesterification processes. In this study an alternative energy stimulant, “microwave irradiation” was used for the production of the alternative energy source, biodiesel. The optimum parametric conditions obtained from the conventional technique were applied using microwave irradiation in order to compare both systems. The results showed that application of radio frequency microwave energy offers a fast, easy route to this valuable biofuel with advantages of enhancing the reaction rate and improving the separation process. The methodology allows for the use of high free fatty acid content feedstock, including used cooking oil; hence it helps to reduce the cost of production which constitutes a major hurdle towards widespread commercialization of biodiesel. The study also showed that the optimum reaction time for microwave-enhanced biodiesel production should be highly respected. Exceeding the optimum reaction time will lead to deterioration of both biodiesel yield and purity. This paper also reported the performance and exhaust emissions from a diesel engine when fuelled with a petroleum diesel fuel and two different biodiesel fuels; one obtained by the conventional technique and the other by microwave irradiation. It was concluded that microwave-enhanced biodiesel is not, at least, inferior to that produced by the conventional technique.


Transesterification engine performance exhaust emissions vegetable oil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, D.; Agarwal, A. K., (2007). Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Appl. Therm. Eng., 27(13), 2314–2323.CrossRefGoogle Scholar
  2. Barnard, T. M.; Leadbeater, N. E.; Boucher, M. B.; Stencel, L. M.; Wilhite, B. A., (2007). Continuous-Flow preparation of biodiesel using microwave heating. Energ. Fuel., 21(3), 1777–1781.CrossRefGoogle Scholar
  3. Cardone, M.; Prati, M. V.; Rocco, V.; Seggiani, M.; Senatore, A.; Vitolo, S., (2002). Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: Engine performance and regulated and unregulated exhaust emissions. Environ. Sci. Tech., 36(21), 4656–4662.CrossRefGoogle Scholar
  4. Dorado, M. P.; Ballesteros, E.; Arnal, J. M.; Gomez, J.; Lopez, F. J., (2003a). Exhaust emissions from a Diesel engine fueled with transesterified waste olive oil. Fuel, 82(11), 1311–1315.CrossRefGoogle Scholar
  5. Dorado, M. P.; Ballesteros, E.; Arnal, J. M.; Gomez, J.; Lopez, F. J., (2003b). Testing waste olive oil methyl ester as a fuel in a ddiesel engine. Energ. Fuel., 17(6), 1560–1565.CrossRefGoogle Scholar
  6. Encinar, J. M.; Juan, F.; Gonzalez, J. F.; Rodriguez-Reinares, A., (2005). Biodiesel from used frying oil: Variables affecting the yields and characteristics of the biodiesel. Ind. Eng. Chem. Res., 44(15), 5491–5499.CrossRefGoogle Scholar
  7. Encinar, J. M.; Juan, F.; Gonzalez, J. F.; Rodriguez-Reinares, A., (2007). Ethanolysis of used frying oils: Biodiesel preparation and characterization. Fuel Process. Tech., 88(5), 513–522.CrossRefGoogle Scholar
  8. Fini, A.; Breccia, A., (1999). Chemistry by microwaves. Pure Appl. Chem., 71(4), 573–579.CrossRefGoogle Scholar
  9. Hernando, J.; Leton, P.; Matia, M. P.; Novella, J. L.; Alvarez-Builla J., (2007). Biodiesel and FAME synthesis assisted by microwaves: Homogeneous batch and flow processes. Fuel, 86(10–11), 1641–1644.CrossRefGoogle Scholar
  10. Kegl, B., (2006). Experimental investigation of optimal timing of the diesel engine injection pump using biodiesel fuel. Energ. Fuel., 20(4), 1460–1470.CrossRefGoogle Scholar
  11. Kegl, B., (2008). Effects of biodiesel on emissions of a bus diesel engine. Bioresource Tech., 99(4), 863–873.CrossRefGoogle Scholar
  12. Koopmans, C.; Iannelli, M.; Kerep, P.; Klink, M.; Schmitz, S.; Sinnwell, S.; Ritter, H., (2006). Microwave-assisted polymer chemistry: Heck-reaction, transesterification, Baeyer-Villiger oxidation, oxazoline polymerization, acrylamides, and porous materials. Tetrahedron, 62(19), 4709–4714.CrossRefGoogle Scholar
  13. Lapuerta, M.; Rodriguez-Fernandez, J.; Agudelo, J. R., (2008). Diesel particulate emissions from used cooking oil biodiesel. Bioresource Tech., 99(4), 731–740.CrossRefGoogle Scholar
  14. Leadbeater, N. E.; Stencel, L. M., (2006). Fast, Easy preparation of biodiesel using microwave heating. Energ. Fuel., 20(5), 2281–2283.CrossRefGoogle Scholar
  15. Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J., (2001). Microwave assisted organic synthesis-a review. Tetrahedron, 57(45), 9225–9283.CrossRefGoogle Scholar
  16. Ma, F.; Hanna, M. A., (1999). Biodiesel production: A review. Bioresour. Tech., 70(1), 1–15.CrossRefGoogle Scholar
  17. Mazzocchia, C.; Modica, G.; Nannicini, R.; Kaddouri, A., (2004). Fatty acid methyl esters synthesis from triglycerides over heterogeneous catalysts in the presence of microwaves. Comptes Rendus Chimie (CR ACAD SCI II C), 7(6–7), 601–605.CrossRefGoogle Scholar
  18. Meka, P. K; Tripathi, V.; Singh, R. P., (2007). Synthesis of biodiesel fuel from safflower oil using various reaction parameters. J. Oleo Sci., 56(1), 9–12.CrossRefGoogle Scholar
  19. Murillo, S.; Miguez, J. L.; Porteiro, J.; Granada, E.; Moran, J. C., (2007). Performance and exhaust emissions in the use of biodiesel in outboard diesel engines. Fuel, 86(12–13), 1765–1771.CrossRefGoogle Scholar
  20. Ozgunay, H.; Colak, S.; Zengin, G.; Sari, O.; Sarikahya, H.; Yuceer, L., (2007). Performance and emission study of biodiesel from leather industry pre-fleshings. Waste Manag., 27(12), 1897–1901.CrossRefGoogle Scholar
  21. Pramanik, K. (2003). Properties and use of jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew. Energ., 28(2), 239–248.CrossRefGoogle Scholar
  22. Ramadhas, A. S., Muraleedharan, C., Jayaraj, S., (2005). Performance and emission evaluation of a diesel engine fueled with methyl esthers of rubber seed oil. Renew. Energ., 30(12), 1789–1800.CrossRefGoogle Scholar
  23. Refaat, A. A.; Attia, N. K.;, Sibak, H. A.; El Sheltawy, S. T.; ElDiwani, G. I., (2008). Production Optimization and Quality Assessment of Biodiesel from Waste Vegetable Oil. Int. J. Environ. Sci. Tech., 5(1), 75–82.Google Scholar
  24. Saifuddin, N.; Chua, K. H., (2004). Production of ethyl ester (Biodiesel) from used Frying oil: Optimization of transesterification process using microwave irradiation. Malaysian J. Chem, 6(1), 77–82.Google Scholar
  25. Schuchardt, U.; Serchelia, R.; Vargas, R. M., (1998). Transesterification of vegetable oils: A review. J. Brazil. Chem. Soc., 9(1), 199–210.Google Scholar
  26. Singh, A. B. H.; Thompson, J.; Van Gerpen, J., (2006). Process optimization of biodiesel production using different alkaline catalysts. Appl. Eng. Agric., 22(4), 597–600.Google Scholar
  27. Tat, M. E.; Van Gerpen, J. H.; Wang, P. S., (2007). Fuel property effects on injection timing, ignition timing, and oxides of nitrogen emissions from biodiesel-fueled engines. Am. Soc. Agricultural Eng., 50(4), 1123–1128.Google Scholar
  28. Usta, N., (2005). Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass Bioenerg., 28(1), 77–86.CrossRefGoogle Scholar
  29. Van Gerpen, J., (2005). Biodiesel processing and production. Fuel Process. Tech., 86(10), 1097–1107.CrossRefGoogle Scholar
  30. Varma, R. S., (2001). Solvent-free accelerated organic syntheses using microwaves. Pure Appl. Chem., 73(1), 193–198.CrossRefGoogle Scholar
  31. Zhou, W.; Boocock, D. G. V., (2003). Ethyl esters from the single-phase base-catalyzed ethanolysis of vegetable oils. J. Am. Oil Chem. Soc., 80(4), 367–371.CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2008

Authors and Affiliations

  • A. A. Refaat
    • 1
  • S. T. El Sheltawy
    • 1
  • K. U. Sadek
    • 2
  1. 1.Department of Chemical Engineering, Faculty of EngineeringCairo UniversityCairoEgypt
  2. 2.Department of Organic Chemistry, Faculty of ScienceMenia UniversityCairoEgypt

Personalised recommendations