Advertisement

Sulphate reducing bacteria to precipitate mercury after electrokinetic soil remediation

  • T. Håkansson
  • P. Suer
  • B. Mattiasson
  • B. Allard
Article

Abstract

Combined treatment with electroremediation and sulphate reducing bacteria (SRB) was tested in laboratory and pilot scale. The contaminated soil came from a chlor-alkali factory and contained about 100 mg/kg Hg. Iodide/iodine complexing agent was used to mobilize mercury. Mercury iodide complexes were moved to the anode solution using an electric field. The anode solution was then mixed with hydrogen sulphide (H2S) containing water, causing precipitation of mercury sulphide. The H2S was produced at site by a SRB reactor. Precipitation problems arising from the nature of the anode solution were expected, since this solution is highly acidic, very oxidised and may contain iodide/iodine that strongly complexes mercury and can hinder mercury sulphide precipitation. Mercury concentrations in the anode solution were up to 65.7 mg/L (field) and 15.4 mg/L (lab. scale). Reduction of mercury in the water was >93% at all times. Iodide did not hinder the process: Nonetheless, in the lab system, iodide concentration was high in the anode solution but mercury reduction was> 99.9%. The redox potential was sufficiently low for HgS precipitation during the experiments, except for a short period, when the mercury removal decreased to 94%. Sulphate reducing bacteria are shown as a viable tool for the treatment of mercury contaminated, acidic, oxidative, iodide containing water, such as that produced by electrokinetic remediation. A second SRB step or other water treatment is required to reduce the mercury concentration to environmentally acceptable levels. Redox potential is the most sensitive factor in the system.

Keywords

Hydrogen sulphide in situ on site wastewater treatment soil contamination iodide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, Y. B.; Alshawabkeh, A. N., (1993). Principles of electrokinetic remediation. ES&T. 27(13), 2638–2647.CrossRefGoogle Scholar
  2. Alvarez, M. T.; Pozzo, T.; Mattiasson, B., (2006). Enhancement of sulphide production in anaerobic packed bed bench-scale biofilm reactors by sulphate reducing bacteria. Biotechnol. Lett., 28(3), 175–181.CrossRefGoogle Scholar
  3. Barnes, L. J., (1994). Emerging technology for bioremediation of metals. J. L. Means and R. E. Hinchee. Boca Raton, Lewis Public Cop., 39–43.Google Scholar
  4. Cord-Ruwisch, R., (1985). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J. Microbiol. Methods 4, 33–36.CrossRefGoogle Scholar
  5. Cox, C. D.; Shoesmith, M. A.; Ghosh, M. M., (1996). Electrokinetic remediation of mercury-contaminated soils using iodine/iodide lixiviant. Environ. Sci. Technol., 30(6), 1933–1938.CrossRefGoogle Scholar
  6. Håkansson, K.; Mattiasson, B., (2002). Microbial degradation of acetonitrile using a suspended-carrier biofilm process. Biotechnol. Lett., 24(4), 287–291.CrossRefGoogle Scholar
  7. Hamilton, W. A., (1998). Sulfate-reducing bacteria: Physiology determines their environmental impact. Geomicrobiol. J., 15(1), 19–28.CrossRefGoogle Scholar
  8. Hansen, T. A., (1994). Metabolism of sulfate-reducing prokaryotes. Antonie van Leeuwnhoek, 66(1–3), 165–185.CrossRefGoogle Scholar
  9. Ho, S. V.; Athmer, C; Sheridan, P. W.; Hughes, B. M.; Orth, R.; McKenzie, D.; Brodsky, P. H.; Shapiro, A. M.; Sivavec, T. M.; Salvo, J.; Schultz, D.; Landis, R.; Griffith, R.; Shoemaker, S., (1999). The lasagna technology for in situ soil remediation 2 Large field test. Environ. Sci. Technol., 33(7), 1092–1099.CrossRefGoogle Scholar
  10. Jorgensson, B. B., (1982). Ecology of the bacteria of the sulphur cycle with special reference to anoxic-oxic interface environments. Philosophical Transactions of the Royal Society of London. Series B: Bio. Sci., 298(1093), 543–561.CrossRefGoogle Scholar
  11. Khan, F. I.; Husain, T.; Hejazi, R., (2004). An overview and analysis of site remediation technologies. J. Environ. Manage., 71(2), 95–122.CrossRefGoogle Scholar
  12. Kolmert, Å., (1999). Sulfate-reducing bacteria in bioremediation processes. Lund, Lund University.Google Scholar
  13. Kolmert, Å.; Henrysson, T.; Hallberg, R.; Mattiasson, B., (1997). Optimization of sulphide production in an anaerobic continuous biofilm process with sulphate reducing bacteria. Biotechnol. Lett. 19(10), 971–975.CrossRefGoogle Scholar
  14. Lageman, R.; Pool, W., (2001). Thirteen years electro-reclamation in the Netherlands. EREM 2001 - 3rd. Symposium and status report on electrokinetic remediation, Karlsruhe, Germany, Angewandte Geologi Karlsruhe.Google Scholar
  15. Lifvergren, T., (2001). Remediation of mercury polluted soil. Örebro studies in Environmental science 1. Örebro, Sweden, Örebro University.Google Scholar
  16. Lifvergren, T.; Suer, P.; Wievegg, U., (2000). Microwave-assisted digestion of mercury polluted soil. 11th. Annual international conference on heavy metals in the Environment, University of Michigan, School of Public Health, Ann Arbor, MI, USA (CD-ROM).Google Scholar
  17. Lloyd, J. R.; Klessa, D. A.; Parry, D. L.; Buck, P.; Brown, N. L., (2004). Stimulation of microbial sulphate reduction in a constructed wetland: microbiological and geochemical analysis. Water Res., 38(7), 1822–1830.CrossRefGoogle Scholar
  18. Monhemius, A. J., (1977). Precipitation diagrams for metal hydroxides, sulphides, arsenates and phosphates. Transactions of the institutions of mining and metallurgy section C-Mineral processing and extractive metallurgy: C202–C206.Google Scholar
  19. Monserrate, E.; Häggblom, M. M., (1997). Dehalogenation and biodegradation of brominated phenols and bezoic acids under Iron-Reducing, Sulfidogenic and Methanogenic Conditions. Appl. Environ. Microbiol., 63(10), 3911–3915.Google Scholar
  20. Naturvårdsverket, (1997). Slutförvar av kvicksilver (Final disposal of mercury). Stockholm, Naturvårdsverket.Google Scholar
  21. Pott, B. M.; Mattiasson, B., (2004). Separation of heavy metals from water solutions at the laboratory scale. Biotechnol. Lett., 26(5), 451–456.CrossRefGoogle Scholar
  22. Probstein, R. F.; Hicks, R. E., (1993). Removal of contaminant from soils by electric fields. Science, 260(5107), 498–503.CrossRefGoogle Scholar
  23. Reddy, K. R.; Xu, C. Y.; Chinthamreddy, S., (2001). Assessment of electrokinetic removal of heavy metals form soils by sequential extraction analysis. J. Hazar. Mater. 84(2), 279–296.CrossRefGoogle Scholar
  24. Suer, P.; Allard, B., (2003). Mercury transport and speciation during electrokinetic soil remediation. Water, Air, Soil Pollut., 143(1–4), 99–109.CrossRefGoogle Scholar
  25. Suer, P., Gitye, K.; Allard, B., (2003). Speciation and transport of heavy metals and macroelements during electroremediation. Environ. Sci. Technol., 37(1), 177–181.CrossRefGoogle Scholar
  26. Suer, P.; Lifvergren, T., (2001). Electrokinetic remediation of mercury contaminated soil with iodide addition. 6th. International conference on mercury as a global pollutant, Minamata Japan.Google Scholar
  27. Suer, P.; Lifvergren, T., (2003). Mercury contaminated soil remediation by iodide and electroreclamation. J. Environ. Eng., 129(5), 441–446.CrossRefGoogle Scholar
  28. Swedish governmental bill, (1997/98). Nr 145.Google Scholar
  29. Svensson, M.; Allard, B.; Düker, A., (2006a). Formation of HgS — mixing HgO or elemental Hg with S, FeS or FeS2. Sci. Total Environ. 368(1), 418–423.CrossRefGoogle Scholar
  30. Svensson, M.; Düker, A.; Allard, B., (2006b). Formation of cinnabar — estimation of favourable conditions in a proposed Swedish repository. J. Hazard. Mater., B136(3), 830–836.CrossRefGoogle Scholar
  31. van Houten, R. T.; Pol, L. W. H.; Lettinga, G, (1994). Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source. Biotechnol. Bioeng., 44(5), 586–594.CrossRefGoogle Scholar
  32. Webb, J. S.; McGinness, S.; Lappin-Scott, H. M., (1998). Metal removal by sulphate-reducing bacteria from natural and constructed wetlands. J. Appl. Microbiol., 84(2), 240–248.CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2008

Authors and Affiliations

  • T. Håkansson
    • 1
  • P. Suer
    • 2
  • B. Mattiasson
    • 1
  • B. Allard
    • 3
  1. 1.Department of BiotechnologyLunds UniversityLundSweden
  2. 2.Department of Geomaterials and ModellingSwedish Geotechnical InstituteLinköpingSweden
  3. 3.Department of Natural Sciences at Örebro University and the head of Man Technology Environment Research CentreÖrebro UniversitySweden

Personalised recommendations