Pollution reduction and biodegradability index improvement of tannery effluents

  • M. A. Aboulhassan
  • S. Souabi
  • A. Yaacoubi


Al2 (SO4)3, 18H2O, FeCl3 and Ca (OH)2 were used for the treatment of tannery wastewaters. The influences of pH and coagulant dosages were studied. Conditions were optimised according to the pollutant removal efficiencies, the volume of decanted sludge and the biodegradability index improvement. The results indicate that 67–71% of total COD, 76–92% of color and 79–97% of Cr can be removed using the optimum coagulant dosages at the optimum pH range. Al2 (SO4)3, 18H2O and Ca (OH)2 produced better results than FeCl3 in terms of COD, color and Cr removal as well as in terms of biodegradability improvement. Moreover, Al2 (SO4)3, 18H2O and FeCl3 produced the least amount of sludges for a given amounts of COD, color and Cr removed in comparison with Ca (OH)2. Al2 (SO4)3, 18H2O seems to be suitable for yielding high pollutant removals and corresponding low volumes of decanted sludges in addition to improving wastewaters biodegradability index.


Tannery wastewater coagulation sludges production biodegradability index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aboulhassan, M. A.; Souabi, S.; Yaacoubi, A.; Baudu, M., (2005). Treatment of textile wastewater using a natural flocculant. Environ. Tech., 26, 705–711.CrossRefGoogle Scholar
  2. AFNOR (1999). Techniques, la qualité de l’eau, Association Française de Normalisation.Google Scholar
  3. Aguilar, M. I.; Saez, J.; Lioréns, M.; Soler, A.; Ortuno, J. F., (2002). Nutrient removal and sludges production in the coagulation-floculation process. Water Res. 36, 2910–2919.CrossRefGoogle Scholar
  4. Al-Momani, F.; Touraud, E.; Degorce Dumas, J. R.; Roussy, J.; Thomas, O., (2002). Biodegradability enhancement of textile dyes and textile wastewater by UV photolysis. J. Photoch. Photobio. A, 153, 191–197.CrossRefGoogle Scholar
  5. Amokrane, A.; Comel, C.; Veron, J., (1997). Landfill leachates pre-treatment by coagulation-flocculation. Water Res. 31, 2775–2782.CrossRefGoogle Scholar
  6. Arvanitoyamis, I.; Eleftheriadis, I.; Tsatsaroni, E., (1989). Influence of pH on adsorption of dye-containing effluents with different bentonites. Chemosphere. 18, 1707–1711.CrossRefGoogle Scholar
  7. Aysegül, P.; Enis, T., (2002). Color removal from cotton textile industry wastewater in an activated sludges system with various additives. Water Res. 36, 2920–2925.CrossRefGoogle Scholar
  8. Bartlett, R. J.; James, D., (1979). Behavior of chromium in soils: III oxidation. J. Environ. Qual., 8, 31–35.CrossRefGoogle Scholar
  9. Bousher, A.; Shen, X.; Edyvean, R. G. J., (1997). Removal of colored organic mater by adsorption onto lowcost waste materials. Water Res., 31, 2084–2092.CrossRefGoogle Scholar
  10. Duan, J.; Gregory, J., (2003). Coagulation by hydrolysing metal salts. Adv. Colloid Interface, 100, 475–502.CrossRefGoogle Scholar
  11. Eaton, A. D.; Clescen, L. S.; Greenberg, A. E., (1995). Stetard methods for the examination of water and wastewater. APHA.19th. Ed. ln: Editted by Washington: APM, setts. Report # 331.Google Scholar
  12. Florence, T. M.; Bately, G. E., (1980). Chemical speciation in natural waters. CRC Cr. Rev. Anal. Chem., 9, 219–296.Google Scholar
  13. James, C. R.; O’melia, C. R., (1982). Considering sludges production in the selection of coagulants. J. Am. Water Works Ass., 74, 148–151.Google Scholar
  14. Letterman, R. D.; Driscoll, C. T., (1988). Survey of residual aluminum in filtered water. J. Am. Water Works Ass., 80, 154–158.Google Scholar
  15. Mahdavi Talarposhti, A.; Donnelly, T.; Andersonm, G. K., (2001). Color removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor, Water Res., 35, 425–432.CrossRefGoogle Scholar
  16. Metcalf and Eddy, (1985). Wastewater Engineering: Treatment, Disposal and Reuse, 3rd. Ed. McGraw-Hill Inc., New York, USA.Google Scholar
  17. Olthof, M.; Eckenfelder, W. W., (1976). Coagulation of textile wastewater. Text. Chem. Color, 8, 18–22.Google Scholar
  18. Orhon, D.; Sgzen, S.; Ubay Cokgsr, E.; Ates, E., (1998). The effect of chemical settling on the kinetics and design of activated sludges for tannery wastewater. IAWQ 19th. Biennial International Conference.Google Scholar
  19. Ros, M.; Gantar, A., (1998). Possibilities of reduction of recipient loading of tannery wastewater in Slovenia. Water Sci. Tech., 37, 145–152.Google Scholar
  20. Song, Z.; Williams, C. J.; Edyvean, R. G. J., (2004). Treatment of tannery wastewater by chemical coagulation. Desalination, 164, 249–259.CrossRefGoogle Scholar
  21. Sumathi, K. M. S.; Mahimairaja, S.; Naidu, R., (2005). Use of low-cost biological wastes and vermiculite for removal of Cr from tannery effluent. Bioresource Tech., 96, 309–316.CrossRefGoogle Scholar
  22. Suthanthararajan, R.; Ravindranath, E.; Chitra, K.; Umamaheswari, B.; Ramesh, T.; Rajamani, S., (2004). Membrane application for recovery and reuse of water from treated tannery wastewater. Desalination, 164, 151–156.CrossRefGoogle Scholar
  23. Thanikaivelan, P.; Jonnalagadda, R. R.; Balachetran, U. N.; Ramasami, T., (2004). Progress and recent trends in biotechnological methods for leather processing. Trends Biotech. 22, 181–188.CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2008

Authors and Affiliations

  1. 1.Laboratoire de Génie de l’Eau et de l’EnvironnementFaculté des Sciences et TechniquesMohammediaMarocco
  2. 2.Laboratoire de Chimie Organique AppliquéeEquipe Environnement et Méthodologie, Faculté des Sciences SemlaliaMarrakechMarocco

Personalised recommendations